如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由;
(2)性質(zhì)探究:經(jīng)探究發(fā)現(xiàn),垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間有這樣的數(shù)量關(guān)系:AB2+CD2=AD2+BC2,請寫出證明過程;(先畫出圖形,寫出已知,求證)
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG和GE.已知AC=4,AB=5,求GE長.

【考點(diǎn)】四邊形綜合題.
【答案】(1)四邊形ABCD是垂美四邊形;證明見解答;
(2)AD2+BC2=AB2+CD2;證明見解答;
(3)GE=.
(2)AD2+BC2=AB2+CD2;證明見解答;
(3)GE=
73
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:557引用:6難度:0.1
相似題
-
1.如圖,四邊形ABCD是正方形,E是線段BC上一點(diǎn),連接AE,將AE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°,得到EF,過點(diǎn)F作FG⊥CD于點(diǎn)G.
(1)如圖①,當(dāng)E是BC的中點(diǎn)時(shí),請直接寫出線段FG和BE的數(shù)量關(guān)系;
(2)如圖②,當(dāng)E不是BC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?請說明理由;
(3)若BC=4,CE=2,EF與CD交于點(diǎn)P,請求出CP的長.發(fā)布:2025/6/20 12:0:2組卷:32引用:1難度:0.1 -
2.如圖1,正方形ABCD,E為平面內(nèi)一點(diǎn),且∠BEC=90°,把△BCE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得△BAG,直線AG和直線CE交于點(diǎn)F.
(1)證明:四邊形BEFG是正方形;
(2)若∠AGD=135°,猜測CE和CF的數(shù)量關(guān)系,并說明理由;
(3)如圖2,連接DF,若AB=13,CF=17,求DF的長.發(fā)布:2025/6/20 10:30:1組卷:97引用:1難度:0.1 -
3.已知:在?ABCD中,∠BAD=45°,AB=BD,E為BC上一點(diǎn),連接AE交BD于F,過點(diǎn)D作DG⊥AE于G,延長DG交BC于H
(1)如圖1,若點(diǎn)E與點(diǎn)C重合,且AF=,求AD的長;5
(2)如圖2,連接FH,求證:∠AFB=∠HFB;
(3)如圖3,連接AH交BF于M,當(dāng)M為BF的中點(diǎn)時(shí),請直接寫出AF與FH的數(shù)量關(guān)系.發(fā)布:2025/6/20 10:30:1組卷:532引用:2難度:0.3