試卷征集
加入會(huì)員
操作視頻

將拋物線y=ax2(a≠0)向左平移1個(gè)單位,再向上平移4個(gè)單位后,得到拋物線H:y=a(x-h)2+k.拋物線H與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.已知A(-3,0),點(diǎn)P是拋物線H上的一個(gè)動(dòng)點(diǎn).
菁優(yōu)網(wǎng)
(1)求拋物線H的表達(dá)式.
(2)如圖1,點(diǎn)P在線段AC上方的拋物線H上運(yùn)動(dòng)(不與A、C重合),過(guò)點(diǎn)P作PD⊥AB,垂足為D,PD交AC于點(diǎn)E.作PF⊥AC,垂足為F,求△PEF的面積的最大值.
(3)如圖2,點(diǎn)Q是拋物線H的對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),在拋物線H上,是否存在點(diǎn)P,使得以點(diǎn)A、P、C、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
參考:若點(diǎn)P1(x1,y1)、P2(x2,y2),則線段P1P2的中點(diǎn)P0的坐標(biāo)為
x
1
+
x
2
2
,
y
1
+
y
2
2

【考點(diǎn)】二次函數(shù)綜合題
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:233引用:1難度:0.2
相似題
  • 1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個(gè)交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
    (1)求該拋物線的解析式;
    (2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
    (3)設(shè)拋物線的頂點(diǎn)是F,對(duì)稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問(wèn):
    ①m取何值時(shí),過(guò)點(diǎn)P、M、N、F的平面圖形不是梯形?
    ②四邊形PMNF是否有可能是等腰梯形?若有可能,請(qǐng)求出此時(shí)m的值;若不可能,請(qǐng)說(shuō)明理由.
    菁優(yōu)網(wǎng)

    發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5
  • 菁優(yōu)網(wǎng)2.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為

    發(fā)布:2024/12/23 17:30:9組卷:3635引用:37難度:0.4
  • 菁優(yōu)網(wǎng)3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
    5
    ,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-4
    5
    ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是(  )

    發(fā)布:2024/12/26 1:30:3組卷:2661引用:7難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正