設函數f(x)=lnx+mx,m∈R
(1)當m=e(e為自然對數的底數)時,求f(x)的最小值;
(2)討論函數g(x)=f′(x)-x3零點的個數;
(3)若對任意b>a>0,f(b)-f(a)b-a<1恒成立,求m的取值范圍.
m
x
x
3
f
(
b
)
-
f
(
a
)
b
-
a
【考點】利用導數求解函數的最值.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:337引用:12難度:0.1
相似題
-
1.設f(x)=(x+1)ln(x+1),g(x)=ax2+x(a∈R).
(1)求f(x)的最小值;
(2)若?x≥0,f(x)≤g(x),求實數a的取值范圍.發(fā)布:2024/10/16 18:0:2組卷:97引用:5難度:0.3 -
2.已知兩數f(x)=2|sinx|+cosx,則f(x)的最小值為( ?。?/h2>
發(fā)布:2024/11/8 0:0:1組卷:134難度:0.6 -
3.已知函數f(x)=2ex-sin2x.
(1)當x≥0時,求函數f(x)的最小值;
(2)若對于,不等式4xex+xcos2x-ax2-5x≥0恒成立,求實數a的取值范圍.?x∈(-π12,+∞)發(fā)布:2024/10/11 15:0:1組卷:38引用:2難度:0.5