用幾個小的長方形、正方形拼成一個大的正方形,然后利用兩種不同的方法計算這個大的正方形的面積,可以得到一個等式.例如:計算圖1的面積,把圖1看作一個大正方形,它的面積是(a+b)2;如果把圖1看作是由2個長方形和2個小正方形組成的,它的面積為a2+2ab+b2,由此得到(a+b)2=a2+2ab+b2.
(1)如圖2,由幾個面積不等的小正方形和幾個小長方形拼成一個邊長為(a+b+c)的正方形,從中你能發(fā)現(xiàn)什么結(jié)論?該結(jié)論用等式表示為 (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
(2)利用(1)中的結(jié)論解決以下問題:已知a+b+c=10,ab+ac+bc=38,求a2+b2+c2的值;
(3)如圖3,由正方形ABCD邊長為a,正方形CEFG邊長為b,點D,G,C在同一直線上,連接BD,DF,若a-b=2,ab=3,求圖3中陰影部分的面積.
【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:681引用:5難度:0.4
相關(guān)試卷