已知圓M:(x-2)2+y2=4,點P(-1,t)(t∈R).
(1)若t=0,求以P為圓心且與圓M相切的圓的方程;
(2)若過點P的兩條直線被圓M截得的弦長均為23,且與y軸分別交于點S、T,|ST|=34,求t的值.
2
3
|
ST
|
=
3
4
【考點】直線與圓的位置關(guān)系.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/1 21:0:8組卷:211引用:5難度:0.5
相似題
-
1.在平面直角坐標系xOy中,已知直線ax-y+2=0與圓C:x2+y2-2x-3=0交于A,B兩點,若鈍角△ABC的面積為
,則實數(shù)a的值是( )3發(fā)布:2025/1/5 18:30:5組卷:109引用:1難度:0.6 -
2.已知x,y滿足x2+y2=1,則
的最小值為( ?。?/h2>y-2x-1發(fā)布:2024/12/29 10:30:1組卷:27引用:2難度:0.9 -
3.已知圓C:x2+y2+2ay=0(a>0)截直線
所得的弦長為3x-y=0,則圓C與圓C':(x-1)2+(y+1)2=1的位置關(guān)系是( ?。?/h2>23發(fā)布:2025/1/1 11:0:5組卷:86引用:4難度:0.6
把好題分享給你的好友吧~~