試卷征集
加入會員
操作視頻

已知數(shù)列A:a1,a2,…,aN(N≥3)的各項均為正整數(shù),設集合T={x|x=aj-ai,1≤i<j≤N},記T的元素個數(shù)為P(T).
(Ⅰ)若數(shù)列A:1,2,4,3,求集合T,并寫出P(T)的值;
(Ⅱ)若A是遞增數(shù)列,求證:“P(T)=N-1”的充要條件是“A為等差數(shù)列”;
(Ⅲ)若N=2n+1,數(shù)列A由1.,2,3,…,n,2n這n+1個數(shù)組成,且這n+1個數(shù)在數(shù)列A中每個至少出現(xiàn)一次,求P(T)的取值個數(shù).

【考點】數(shù)列的應用
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:332引用:8難度:0.2
相似題
  • 1.我國古代數(shù)學名著《孫子算經(jīng)》載有一道數(shù)學問題:“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩二,七七數(shù)之剩二,問物幾何?”根據(jù)這一數(shù)學思想,所有被3除余2的整數(shù)從小到大組成數(shù)列{an},所有被5除余2的正整數(shù)從小到大組成數(shù)列{bn},把數(shù){an}與{bn}的公共項從小到大得到數(shù)列{cn},則下列說法正確的是(  )

    發(fā)布:2024/10/26 17:0:2組卷:126引用:2難度:0.5
  • 2.我國古代數(shù)學專著《孫子算法》中有“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”如果此物數(shù)量在100至200之間,那么這個數(shù)
     

    發(fā)布:2024/10/26 17:0:2組卷:83引用:2難度:0.5
  • 3.對于數(shù)列{an}定義△ai=ai+1-ai為{an}的差數(shù)列,△2ai=△ai+1-△ai為{an}的累次差數(shù)列.如果{an}的差數(shù)列滿足|△ai|≠|(zhì)△aj|,(?i,j∈N*,i≠j),則稱{an}是“絕對差異數(shù)列”;如果{an}的累次差數(shù)列滿足|△2ai|=|△2aj|,(?i,j∈N*),則稱{an}是“累差不變數(shù)列”.
    (1)設數(shù)列A1:2,4,8,10,14,16;A2:6,1,5,2,4,3,判斷數(shù)列A1和數(shù)列A2是否為“絕對差異數(shù)列”或“累差不變數(shù)列”,直接寫出你的結論;
    (2)若無窮數(shù)列{an}既是“絕對差異數(shù)列”又是“累差不變數(shù)列”,且{an}的前兩項a1=0,a2=a,|△2ai|=d(d為大于0的常數(shù)),求數(shù)列{an}的通項公式;
    (3)已知數(shù)列B:b1,b2 …,b2n-1,b2n是“絕對差異數(shù)列”,且{b1,b2 …,b2n}={1,2,?,2n},證明:b1-b2n=n的充要條件是{b2,b4 …,b2n}={1,2,?,n}.

    發(fā)布:2024/10/23 1:0:2組卷:110引用:1難度:0.1
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正