已知F1,F(xiàn)2分別為雙曲線x2a2-y2b2=1的左、右焦點,P為雙曲線右支上一點,滿足|PF2|=|F1F2|,直線PF1與圓x2+y2=a2有公共點,則雙曲線的離心率的最大值是 5353.
x
2
a
2
-
y
2
b
2
=
1
5
3
5
3
【考點】雙曲線的幾何特征.
【答案】
5
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 20:38:36組卷:50引用:4難度:0.6
相似題
-
1.若雙曲線
-x28=1的漸近線方程為y=±2x,則實數(shù)m等于( ?。?/h2>y2m發(fā)布:2025/1/5 18:30:5組卷:26引用:1難度:0.9 -
2.已知F1,F(xiàn)2為橢圓和雙曲線的公共焦點,P是它們的公共點,且∠F1PF2=
,e1,e2分別為橢圓和雙曲線的離心率,則π3的值為( ?。?/h2>4e1e23e12+e22發(fā)布:2025/1/2 23:30:3組卷:199引用:2難度:0.5 -
3.已知雙曲線
的右焦點為F(2,0),漸近線方程為x2a2-y2b2=1(a>0,b>0),則該雙曲線實軸長為( ?。?/h2>3x±y=0發(fā)布:2025/1/2 19:0:5組卷:135引用:2難度:0.7