將一個式子或一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法.這種方法常常被用到式子的恒等變形中,以挖掘題目中的隱含條件,是解題的有力手段之一.
例如,求代數(shù)式x2+2x+3的最小值.
解:原式=x2+2x+1+2=(x+1)2+2.
∵(x+1)2≥0,
∴(x+1)2+2≥2.
∴當x=-1時,x2+2x+3的最小值是2.
(1)在橫線上添加一個常數(shù)項,使代數(shù)式x2+10x+2525成為完全平方式;
(2)請仿照上面的方法求代數(shù)式x2+6x-1的最小值;
(3)已知△ABC的三邊a,b,c滿足a2-6b=-14,b2-8c=-23,c2-4a=8.求△ABC的周長.
【考點】配方法的應用;非負數(shù)的性質:偶次方.
【答案】25
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:390引用:3難度:0.7
相似題
-
1.請閱讀下列材料:
我們可以通過以下方法求代數(shù)式的x2+2x-3最小值.
x2+2x-3=x2+2x?1+12-12-3=(x+1)2-4∵(x+1)2≥0∴當x=-1時,x2+2x-3有最小值-4.
請根據上述方法,解答下列問題:
(1),則a=,b=;x2+23x+5=x2+2×3x+(3)2+2=(x+a)2+b
(2)若代數(shù)式x2-2kx+7的最小值為3,求k的值.發(fā)布:2025/6/8 6:30:2組卷:26引用:1難度:0.6 -
2.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列結論正確的個數(shù)為( ?。?br />①若A=x2+6x+n2是完全平方式,則n=±3;
②B-A的最小值是2;
③若n是A+B=0的一個根,則;4n2+1n2=659
④若(2022-A)(A-2019)=0,則(2022-A)2+(A-2019)2=4.發(fā)布:2025/6/8 17:0:2組卷:119引用:2難度:0.6 -
3.已知等腰△ABC中的三邊長a,b,c滿足2a2+b2-4a-8b+18=0,則△ABC的周長是( )
發(fā)布:2025/6/8 14:30:2組卷:1680引用:3難度:0.5