設(shè){an}是等比數(shù)列,公比大于0,其前n項和為Sn(n∈N*),{bn}是等差數(shù)列,已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.
(1)求{an}和{bn}的通項公式;
(2)設(shè)數(shù)列{Sn}的前n項和為Tn(n∈N*).
(i)求Tn;
(ii)求n∑k=1(-1)k(3bk+4)(Tk+bk+2)(k+1)(k+2).
S
n
(
n
∈
N
*
)
T
n
(
n
∈
N
*
)
n
∑
k
=
1
(
-
1
)
k
(
3
b
k
+
4
)
(
T
k
+
b
k
+
2
)
(
k
+
1
)
(
k
+
2
)
【考點】裂項相消法.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 8:0:9組卷:97引用:2難度:0.5
相似題
-
1.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè)x∈R,用[x]表示不超過x的最大整數(shù),則y=[x]稱為“高斯函數(shù)”,例如:[-2.5]=-3,[2.7]=2.已知數(shù)列{an}滿足a1=1,a2=3,an+2+2an=3an+1,若bn=[log2an+1],Sn為數(shù)列
的前n項和,則S2023=( ?。?/h2>{1bnbn+1}A. 20222023B. 20242023C. 20232024D. 20252024發(fā)布:2024/12/15 3:30:1組卷:129引用:2難度:0.5 -
2.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號.用他的名字定義的函數(shù)稱為高斯函數(shù)f(x)=[x],其中[x]表示不超過x的最大整數(shù),已知數(shù)列{an}滿足a1=2,a2=6,an+2+5an=6an+1,若bn=[log5an+1],為數(shù)列
的前n項和,則[S2024]=( ?。?/h2>{1000bnbn+1}A.999 B.749 C.499 D.249 發(fā)布:2024/12/16 8:0:13組卷:147引用:6難度:0.6 -
3.已知數(shù)列{an}滿足
,若數(shù)列a1+a22+a33+?+ann=2n+1的前n項和Sn,對任意n∈N*不等式Sn<λ恒成立,則實數(shù)λ的取值范圍是( ?。?/h2>{n+2(n+1)an}A.λ>1 B.λ≥1 C.λ≥ 58D.λ> 58發(fā)布:2024/12/10 10:30:1組卷:187引用:4難度:0.5
把好題分享給你的好友吧~~