試卷征集
加入會(huì)員
操作視頻

如圖,AB⊥BC,CD⊥BC,垂足分別為B,C,P為線(xiàn)段BC上一點(diǎn),連結(jié)PA,PD.已知AB=5,DC=4,BC=12,則AP+DP的最小值為
15
15

【答案】15
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/10 3:0:1組卷:411引用:4難度:0.6
相似題
  • 1.如圖,△ABC中,AB=AC=2,∠ACB=75°,AD,BE為高.點(diǎn)M,N分別為AB,AD上的動(dòng)點(diǎn),那么MN+BN的最小值為

    發(fā)布:2025/6/10 8:30:1組卷:173引用:3難度:0.5
  • 2.如圖,正方形ABCD的邊長(zhǎng)為8,點(diǎn)E在AB上,BE=2,點(diǎn)M,N為AC上動(dòng)點(diǎn),且MN=2
    2
    ,連接BN,EM,則四邊形BEMN周長(zhǎng)的最小值為

    發(fā)布:2025/6/10 10:0:2組卷:736引用:5難度:0.3
  • 3.11世紀(jì)的一位阿拉伯?dāng)?shù)學(xué)家曾提出一個(gè)“鳥(niǎo)兒捉魚(yú)”問(wèn)題:小溪邊長(zhǎng)著兩棵棕櫚樹(shù),恰好隔岸相望,一棵棕櫚樹(shù)CD高是6米,另外一棵AB點(diǎn)高4米;AB與CD樹(shù)干間的距離是10米.每棵樹(shù)的樹(shù)頂上都停著一只鳥(niǎo),忽然,兩只鳥(niǎo)同時(shí)看見(jiàn)棕櫚樹(shù)間的水面上游出一條魚(yú),它們立刻以相同的速度飛去抓魚(yú),并且同時(shí)到達(dá)目標(biāo)E.
    (1)問(wèn):這條魚(yú)出現(xiàn)的地方離比較高的棕櫚樹(shù)的樹(shù)根C有多遠(yuǎn)?
    (2)求
    16
    +
    x
    2
    +
    36
    +
    10
    -
    x
    2
    的最小值

    發(fā)布:2025/6/10 11:0:1組卷:147引用:4難度:0.5
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶(hù)服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正