試卷征集
加入會員
操作視頻

已知F1(-1,0),F(xiàn)2(1,0),坐標(biāo)平面上一點(diǎn)P滿足:△PF1F2的周長為6,記點(diǎn)P的軌跡為C1.拋物線C2以F2為焦點(diǎn),頂點(diǎn)為坐標(biāo)原點(diǎn)O.
(Ⅰ)求C1,C2的方程;
(Ⅱ)若過F2的直線l與拋物線C2交于A,B兩點(diǎn),問在C1上且在直線l外是否存在一點(diǎn)M,使直線MA,MF2,MB的斜率依次成等差數(shù)列,若存在,請求出點(diǎn)M的坐標(biāo),若不存在,請說明理由.

【考點(diǎn)】直線與圓錐曲線的綜合
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:65引用:3難度:0.3
相似題
  • 1.如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來計(jì)算,則如圖2,過拋物線C:y=3x2(x≥0)上一點(diǎn)A(點(diǎn)A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/11 8:0:1組卷:6引用:1難度:0.1
  • 2.已知拋物線C:y2=2px(p>0)上任意一點(diǎn)到焦點(diǎn)F的距離比到y(tǒng)軸的距離大1.
    (1)求拋物線C的方程;
    (2)若過焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),M在第一象限,且|MF|=2|NF|,求直線MN的方程;
    (3)求出一個數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.
    例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積
    16
    3
    后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
    16
    3
    ,求側(cè)棱長”;也可以是“若正四棱錐的體積為
    16
    3
    ,求所有側(cè)面面積之和的最小值”.
    現(xiàn)有正確命題:過點(diǎn)
    A
    -
    p
    2
    0
    的直線交拋物線C:y2=2px(p>0)于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對稱點(diǎn)為R,則直線RQ必過焦點(diǎn)F.
    試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

    發(fā)布:2024/11/12 8:0:1組卷:21引用:3難度:0.7
  • 3.橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的一個焦點(diǎn)是F(1,0),已知橢圓短軸的兩個三等分點(diǎn)與一個焦點(diǎn)構(gòu)成正三角形.
    (1)求橢圓的標(biāo)準(zhǔn)方程;
    (2)已知Q(x0,y0)為橢圓上任意一點(diǎn),求以Q為切點(diǎn),橢圓的切線方程.
    (3)設(shè)點(diǎn)P為直線x=4上一動點(diǎn),過P作橢圓兩條切線PA,PB,求證直線AB過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

    發(fā)布:2024/11/7 8:0:2組卷:77引用:1難度:0.1
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正