如圖,二次函數y=-nx2+2的圖象過點(2,0),矩形ABCD的頂點B,C在x軸上,A,D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內.
(1)求二次函數的解析式;
(2)設點A的坐標為(x,y),試求矩形ABCD的周長m關于自變量x的函數解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,它的周長為9?試證明你的結論.
【考點】二次函數綜合題.
【答案】(1)y=-0.5x2+2;
(2)m=-x2-4x+4,(-2<x<0),
(3)不存在,理由見解答.
(2)m=-x2-4x+4,(-2<x<0),
(3)不存在,理由見解答.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:100引用:1難度:0.3
相似題
-
1.如圖,已知二次函數y=ax2+bx-4的圖象與x軸交于A,B兩點,(點A在點B左側),與y軸交于點C,點A的坐標為(-2,0),且對稱軸為直線x=1,直線AD交拋物線于點D(2,m).
(1)求二次函數的表達式;
(2)在拋物線的對稱軸上是否存在一點M,使△MAC的周長最小,若存在,求出點M的坐標;
(3)如圖2,點P是線段AB上的一動點(不與A、B重合),過點P作PE∥AD交BD于E,連接DP,當△DPE的面積最大時,求點P的坐標.發(fā)布:2025/6/6 20:30:1組卷:90引用:1難度:0.2 -
2.如圖,已知拋物線y=x2+bx+c與直線y=-x+3相交于坐標軸上的A,B兩點,頂點為C.
(1)填空:b=
(2)將直線AB向下平移h個單位長度,得直線EF.當h為何值時,直線EF與拋物線y=x2+bx+c沒有交點?
(3)直線x=m與△ABC的邊AB,AC分別交于點M,N.當直線x=m把△ABC的面積分為1:2兩部分時,求m的值.發(fā)布:2025/6/6 21:0:2組卷:327引用:5難度:0.3 -
3.如圖,拋物線y=ax2+bx+2經過點A(-1,0),B(4,0),交y軸于點C.
(1)求拋物線的表達式.
(2)點D為y軸右側拋物線上一點,是否存在點D,使S△ABC=S△ABD?若存在,請求出點D的坐標;若不存在,請說明理由.23
(3)將直線BC繞點B順時針旋轉45°,與拋物線交于另一點E,求點E的坐標.發(fā)布:2025/6/6 23:30:1組卷:40引用:1難度:0.3