問題情境:
我們知道,“兩條平行線被第三條直線所截,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補”,所以在某些探究性問題中通過“構(gòu)造平行線”可以起到轉(zhuǎn)化的作用.
已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,長方形DEFG中,DE∥GF.
問題初探:
(1)如圖(1),若將三角板ABC的頂點A放在長方形的邊GF上,BC與DE相交于點M,AB⊥DE于點N,求∠EMC的度數(shù);
分析:過點C作CH∥GF,則有CH∥DE,從而得∠CAF=∠HCA,∠EMC=∠MCH,從而可以求得∠EMC的度數(shù);
由分析得,請你直接寫出:∠CAF的度數(shù)為 30°30°,∠EMC的度數(shù)為 60°60°;
類比再探:
(2)若將三角板ABC按圖(2)所示方式擺放(AB與DE不垂直),請你猜想寫出∠CAF與∠EMC的數(shù)量關(guān)系,并說明理由.

【考點】平行線的判定與性質(zhì).
【答案】30°;60°
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:73引用:1難度:0.5
相似題
-
1.如圖,一個由4條射線構(gòu)成的圖案,其中∠1=125°,∠2=55°,∠3=55°
(1)寫出圖中相互平行的射線,并證明;
(2)直接寫出∠A的度數(shù)(不需要證明)發(fā)布:2025/6/9 3:30:1組卷:26引用:2難度:0.7 -
2.已知:∠DAC+∠ACB=180°,∠1=∠2,∠3=∠4,CE平分∠BCF嗎?請說明理由.
發(fā)布:2025/6/9 1:0:1組卷:450引用:1難度:0.5 -
3.完成下面的填空.
如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2.
證明:∠CED+∠ACB=180°
請你將小明的證明過程補充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知),
∴∠FGB=∠CDB=90° ( ).
∴GF∥CD( ).
∵GF∥CD(已證),
∴∠2=∠BCD ( ).
又∵∠1=∠2(已知),
∴∠1=∠BCD ( ).
∴DE∥BC ( ).
∴∠CED+∠ACB=180° ( ).發(fā)布:2025/6/9 2:30:1組卷:221引用:3難度:0.7