在數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們以“三角形紙片的折疊、旋轉(zhuǎn)”為主題開展數(shù)學(xué)活動(dòng),探究與角的度數(shù)、線段長(zhǎng)度有關(guān)的問題.對(duì)直角三角形紙片ABC(∠BAC=90°)進(jìn)行如下操作:
【初步探究】如圖1,折疊三角形紙片ABC,使點(diǎn)C與點(diǎn)A重合,得到折痕DE,然后展開鋪平,則AB與DE位置關(guān)系為 AB∥DEAB∥DE,AB與DE的數(shù)量關(guān)系為 DE=12ABDE=12AB;
【再次探究】如圖2,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CMN,連接BM,AN,若BC=5,AB=3,求ANBM的值;
【拓展提升】在(2)的條件下,在順時(shí)針旋轉(zhuǎn)-周的過程中,當(dāng)CN∥AB時(shí),求AM的長(zhǎng).

1
2
1
2
AN
BM
【考點(diǎn)】相似形綜合題.
【答案】AB∥DE;DE=AB
1
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/29 8:6:34組卷:225引用:2難度:0.1
相似題
-
1.小波在復(fù)習(xí)時(shí),遇到一個(gè)課本上的問題,溫故后進(jìn)行了操作、推理與拓展.
(1)溫故:如圖1,在△ABC中,AD⊥BC于點(diǎn)D,正方形PQMN的邊QM在BC上,頂點(diǎn)P,N分別在AB,AC上,且.若BC=6,AD=4,則正方形PQMN的邊長(zhǎng)等于 ;PNBC+MNAD=1
(2)操作:能畫出這類正方形嗎?小波按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖2,任意畫△ABC,在AB上任取一點(diǎn)P',畫正方形P'Q'M'N',使Q',M'在BC邊上,N'在△ABC內(nèi),連結(jié)BN'并延長(zhǎng)交AC于點(diǎn)N,畫NM⊥BC于點(diǎn)M,NP⊥NM交AB于點(diǎn)P,PQ⊥BC于點(diǎn)Q,得到四邊形PQMN;
(3)推理:如圖3,若點(diǎn)E是BN的中點(diǎn),求證:EP=EQ;
(4)拓展:在(2)的條件下,射線BN上截取NE=NM,連結(jié)EQ,EM(如圖4).當(dāng)∠NBM=30°時(shí),猜想∠QEM的度數(shù),并嘗試證明.
請(qǐng)幫助小波解決“溫故”、“推理”、“拓展”中的問題.發(fā)布:2025/6/7 9:0:2組卷:103引用:3難度:0.3 -
2.圖①、圖②、圖③都是5×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A、B、C、D均在格點(diǎn)上.請(qǐng)按要求解答問題.(畫圖只能用無刻度的直尺,保留作圖痕跡)
要求:(1)如圖①,=;BECE
(2)如圖②,在BC上找一點(diǎn)F使BF=2;
(3)如圖③,在AC上找一點(diǎn)M,連結(jié)BM、DM,使△ABM∽△CDM.發(fā)布:2025/6/7 8:30:2組卷:210引用:4難度:0.5 -
3.感知:如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),△ABP與△PCD是否相似?(填“是”或“否”).
探究:如圖②,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:△ABP∽△PCD.
拓展:如圖③,在△ABC中,點(diǎn)P是邊BC的中點(diǎn),點(diǎn) D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,
BC=,CE=9,則DE的長(zhǎng)為 .122發(fā)布:2025/6/7 5:0:1組卷:395引用:5難度:0.4
相關(guān)試卷