在圖1--圖4中,菱形ABCD的邊長為3,∠A=60°,點M是AD邊上一點,且DM=13AD,點N是折線AB-BC上的一個動點.
(1)如圖1,當N在BC邊上,且MN過對角線AC與BD的交點時,則線段AN的長度為1313.
(2)當點N在AB邊上時,將△AMN沿MN翻折得到△A′MN,如圖2,
①若點A′落在AB邊上,則線段AN的長度為11;
②當點A′落在對角線AC上時,如圖3,求證:四邊形AMA′N是菱形;
③當點A′落在對角線BD上時,如圖4,求A′BA′N的值.
1
3
13
13
A
′
B
A
′
N
【考點】四邊形綜合題.
【答案】;1
13
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:538引用:4難度:0.5
相似題
-
1.如圖,在平面直角坐標系中,四邊形ABCO是平行四邊形,O為坐標原點,點A的坐標是(-16,0),線段BC交y軸于點D,點D的坐標是(0,8),線段CD=6.動點P從點O出發(fā),沿射線OA的方向以每秒2個單位的速度運動,同時動點Q從點D出發(fā),以每秒1個單位的速度向終點B運動,當點Q運動到點B時,點P隨之停止運動,運動時間為t秒.
(1)用t的代數(shù)式表示:BQ=,AP=;
(2)若以A,B,Q,P為頂點的四邊形是平行四邊形時,求t的值;
(3)當△BQP恰好是等腰三角形時,求t的值.發(fā)布:2025/6/6 20:30:1組卷:342引用:4難度:0.1 -
2.如圖1,正方形ABCD的邊長為6cm,點F從點B出發(fā),沿射線方向以1cm/秒的速度移動,點E從點D出發(fā),向點A以1cm/秒的速度移動(不到點A).設(shè)點E,F(xiàn)同時出發(fā)移動t秒.
(1)在點E,F(xiàn)移動過程中,連接CE,CF,EF,請判斷△CEF的形狀并說明理由;
(2)如圖2,連接EF,設(shè)EF交BD于點M,當t=2時,求AM的長;
(3)如圖3,點G,H分別在邊AB,CD上,且GH=3cm,連接EF,當EF與GH的夾角為45°,求t的值.5發(fā)布:2025/6/6 19:0:1組卷:183引用:4難度:0.4 -
3.已知點A(a,0)和B(0,b)滿足(a-4)2+|b-6|=0,分別過點A、B作x軸、y軸的垂線交于點C,點P從原點出發(fā),以每秒2個單位長度的速度沿著O-B-C-A-O的路線移動
(1)寫出A、B、C三點的坐標;
(2)當點P移動了6秒時,直接寫出點P的坐標;
(3)連接(2)中B、P兩點,將線段BP向下平移h個單位(h>0),得到B′P′,若B′P′將四邊形OACB的面積分成相等的兩部分,求h的值.發(fā)布:2025/6/6 19:30:1組卷:116引用:3難度:0.2
相關(guān)試卷