1.如圖,在平面直角坐標(biāo)系xOy中,直線AB的解析式為y=-
x+m,與x軸、y軸分別交于點(diǎn)B、點(diǎn)A,拋物線y=ax
2+bx+1經(jīng)過點(diǎn)A,與直線AB交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為4,拋物線的對稱軸為直線x=
.
(1)求拋物線的解析式;
(2)動(dòng)點(diǎn)P在直線AC上方的拋物線上,點(diǎn)P的橫坐標(biāo)為t,過點(diǎn)P作x軸的平行線交AC于點(diǎn)M,過點(diǎn)P作y軸的平行線交AC于點(diǎn)N,當(dāng)AM=BN時(shí),求t值;
(3)點(diǎn)Q是坐標(biāo)平面內(nèi)一點(diǎn),將△AOB繞點(diǎn)Q沿逆時(shí)針方向旋轉(zhuǎn)90°后,得到△A
1O
1B
1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A
1、O
1、B
1.若△A
1O
1B
1的兩個(gè)頂點(diǎn)恰好落在拋物線上,請直接寫出此時(shí)點(diǎn)A
1的橫坐標(biāo).