設(shè)函數(shù)f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(3)已知函數(shù)f(x)有三個(gè)互不相同的零點(diǎn)0,x1,x2,且x1<x2,若對(duì)任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范圍.
-
1
3
x
3
【考點(diǎn)】導(dǎo)數(shù)及其幾何意義;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究函數(shù)的最值.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2852引用:43難度:0.3
把好題分享給你的好友吧~~