【問題提出】
我們知道:同弧或等弧所對的圓周角都相等,且等于這條弧所對的圓心角的一半.那在一個圓內(nèi)同一條弦所對的圓周角與圓心角之間又有什么關(guān)系呢?
【初步思考】
(1)如圖1,AB是⊙O的弦,∠AOB=100°,點P1、P2分別是優(yōu)弧AB和劣弧AB上的點,則∠AP1B=5050°,∠AP2B=130130°.
(2)如圖2,AB是⊙O的弦,圓心角∠AOB=m(m<180°),點P是⊙O上不與A、B重合的一點,求弦AB所對的圓周角∠APB的度數(shù)(用m的代數(shù)式表示) (m2)°或180°-(m2)°(m2)°或180°-(m2)°.

【問題解決】
(3)如圖3,已知線段AB,點C在AB所在直線的上方,且∠ACB=135°,用尺規(guī)作圖的方法作出滿足條件的點C所組成的圖形(不寫作法,保留作圖痕跡).
【實際應(yīng)用】
(4)如圖4,在邊長為12的等邊三角形ABC中,點E、F分別是邊AC、BC上的動點,連接AF、BE,交于點P,若始終保持AE=CF,在點E從點A運動到點C過程中,PC的最小值是 4343.
m
2
m
2
m
2
m
2
3
3
【考點】圓的綜合題.
【答案】50;130;()°或180°-()°;4
m
2
m
2
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/22 14:0:9組卷:322引用:1難度:0.1
相似題
-
1.如圖,在△ABC中,BA=BC,∠ABC=90°,以AB為直徑的半圓O交AC于點D,點E是
上不與點B,D重合的任意一點,連接AE交BD于點F,連接BE并延長交AC于點G.?BD
(1)求證:△ADF≌△BDG;
(2)填空:
①若AB=4,且點E是的中點,則DF的長為 ;?BD
②取的中點H,當∠EAB的度數(shù)為 時,四邊形OBEH為菱形.?AE發(fā)布:2025/6/10 13:0:2組卷:3678引用:5難度:0.5 -
2.如圖,四邊形ABCD內(nèi)接于⊙O,⊙O的半徑為4,∠ADC=90°,AB=BC,對角線AC、BD相交于點P.過點P分別作PE⊥AD于點E,PF⊥CD于點F.
(1)求證:四邊形DEPF為正方形;
(2)若,求正方形DEPF的邊長;?AD=2?CD
(3)設(shè)PC的長為x,圖中陰影部分的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出y的最大值.發(fā)布:2025/6/10 13:30:2組卷:213引用:2難度:0.1 -
3.“化圓為方”是古希臘尺規(guī)作圖難題之一.即:求作一個方形,使其面積等于給定圓的面積.這個問題困擾了人類上千年,直到19世紀,該問題被證明僅用直尺和圓規(guī)是無法完成的,如果借用一個圓形紙片,我們就可以化圓為方,方法如下:
已知:⊙O(紙片),其半徑為r.
求作:一個正方形,使其面積等于⊙O的面積.
作法:①如圖1,取⊙O的直徑AB,作射線BA,過點A作AB的垂線l;
②如圖2,以點A為圓心,AO長為半徑畫弧交直線l于點C;
③將紙片⊙O沿著直線l向右無滑動地滾動半周,使點A,B分別落在對應(yīng)的A',B'處;
④取CB'的中點M,以點M為圓心,MC長為半徑畫半圓,交射線BA于點E;
⑤以AE為邊作正方形AEFG.
正方形AEFG即為所求.
根據(jù)上述作圖步驟,完成下列填空:
(1)由①可知,直線l為⊙O的切線,其依據(jù)是 .
(2)由②③可知,AC=r,AB'=πr,則MC=,MA=(用含r的代數(shù)式表示).
(3)連接ME,在Rt△AME中,根據(jù)AM2+AE2=EM2,可計算得AE2=(用含r的代數(shù)式表示).
由此可得S正方形AEFG=S⊙O.發(fā)布:2025/6/10 13:30:2組卷:591引用:5難度:0.4
相關(guān)試卷