【問題提出】
我們知道:同弧或等弧所對的圓周角都相等,且等于這條弧所對的圓心角的一半.那在一個圓內同一條弦所對的圓周角與圓心角之間又有什么關系呢?
【初步思考】
(1)如圖1,AB是⊙O的弦,∠AOB=100°,點P1、P2分別是優(yōu)弧AB和劣弧AB上的點,則∠AP1B=5050°,∠AP2B=130130°.
(2)如圖2,AB是⊙O的弦,圓心角∠AOB=m(m<180°),點P是⊙O上不與A、B重合的一點,求弦AB所對的圓周角∠APB的度數(用m的代數式表示) (m2)°或180°-(m2)°(m2)°或180°-(m2)°.

【問題解決】
(3)如圖3,已知線段AB,點C在AB所在直線的上方,且∠ACB=135°,用尺規(guī)作圖的方法作出滿足條件的點C所組成的圖形(不寫作法,保留作圖痕跡).
【實際應用】
(4)如圖4,在邊長為12的等邊三角形ABC中,點E、F分別是邊AC、BC上的動點,連接AF、BE,交于點P,若始終保持AE=CF,在點E從點A運動到點C過程中,PC的最小值是 4343.
m
2
m
2
m
2
m
2
3
3
【考點】圓的綜合題.
【答案】50;130;()°或180°-()°;4
m
2
m
2
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/22 14:0:9組卷:325引用:1難度:0.1
相似題
-
1.如圖1,以點O為圓心,半徑為4的圓交x軸于A,B兩點,交y軸于C,D兩點,點P為劣弧AC上的一動點,延長CP交x軸于點E;連接PB,交OC于點F.
(1)若點F為OC的中點,求PB的長;
(2)求CP?CE的值;
(3)如圖2,過點O作OH∥AP交PD于點H,當點P在弧AC上運動時,連接AC,PC.試問△APC與△OHD相似嗎?說明理由;的值是否保持不變?若不變,試證明,求出它的值;若發(fā)生變化,請說明理由.APDH發(fā)布:2025/6/24 18:30:1組卷:272引用:1難度:0.5 -
2.如圖,已知⊙O′與x軸交于A、B兩點,與y軸交于C、D兩點,圓心O′的坐標是(1,-1),半徑為
.5
(1)比較線段AB與CD的大?。?br />(2)求A、B、C、D四點的坐標;
(3)過點D作⊙O′的切線,試求這條切線的解析式.發(fā)布:2025/6/24 20:0:2組卷:43引用:1難度:0.5 -
3.下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點A,畫過A點的圓的切線.畫法:
(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經過點A,另一條直角邊與圓交于B點,連接AB;
(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經過點B,畫出另一條直角邊所在的直線AD.則直線AD就是過點A的圓的切線.
請回答:①這種畫法是否正確 (是或否);
②你判斷的依據是:.發(fā)布:2025/6/25 8:0:1組卷:19引用:1難度:0.4