有一經(jīng)銷商,按市場價收購了一種活蟹1000千克,放養(yǎng)在塘內(nèi),此時市場價為每千克30元.據(jù)測算,此后每千克活蟹的市場價,每天可上升1元,但是,放養(yǎng)一天需各種費用支出400元,且平均每天還有10千克蟹死去,假定死蟹均于當(dāng)天全部售出,售價都是每千克20元(放養(yǎng)期間蟹的重量不變).
(1)設(shè)x天后每千克蟹市場價為P元,寫出P關(guān)于x的函數(shù)關(guān)系式;
(2)如果放養(yǎng)x天將活蟹一次性出售,并記1000千克蟹的銷售總額為Q元,寫出Q關(guān)于x的函數(shù)關(guān)系式;
(3)該經(jīng)銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤?最大利潤是多少?
【考點】二次函數(shù)的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/7 17:0:10組卷:156引用:2難度:0.8
相似題
-
1.知識遷移
當(dāng)a>0且x>0時,因為,所以x-(x-ax)2≥0+2a≥0,從而x+ax≥ax(當(dāng)x=2a)是取等號).a
記函數(shù)y=x+(a>0,x>0).由上述結(jié)論可知:當(dāng)x=ax時,該函數(shù)有最小值為2a.a
直接應(yīng)用
已知函數(shù)y1=x(x>0)與函數(shù)y2=(x>0),則當(dāng)x=時,y1+y2取得最小值為.1x
變形應(yīng)用
已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求的最小值,并指出取得該最小值時相應(yīng)的x的值.y2y1
實際應(yīng)用
已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數(shù)為0.001.設(shè)該汽車一次運輸?shù)穆烦虨閤千米,求當(dāng)x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?發(fā)布:2025/6/15 20:30:5組卷:1077引用:18難度:0.3 -
2.一小球被拋出后,距離地面的高度h(米)和飛行時間t(秒)滿足下面函數(shù)關(guān)系式:h=-5(t-1)2+6,則小球距離地面的最大高度是( )
發(fā)布:2025/6/15 21:0:2組卷:1139引用:27難度:0.9 -
3.小敏在今年的校運會比賽中跳出了滿意一跳,函數(shù)h=3.5t-4.9t2,可以描述他跳躍時重心高度的變化.則他跳起后到重心最高時所用的時間是
發(fā)布:2025/6/15 13:0:6組卷:141引用:5難度:0.7