【問題提出】
(1)如圖1,點A、B在直線l的同側(cè),點A到直線l的距離AC=2,點B到直線l的距離BD=4,A、B兩點的水平距離CD=8,點P是直線l上的一個動點,則AP+BP的最小值是 1010;
【問題探究】
(2)如圖2,在矩形ABCD中,AB=4,BC=2,G是AD的中點,線段EF在邊AB上左右滑動,若EF=1,求GE+CF的最小值;
【問題解決】
(3)如圖3,某公園有一塊形狀為四邊形ABCD的空地,管理人員規(guī)劃修兩條小路AC和BD(小路的寬度忽略不計,兩條小路交于點P),并在AD和BC上分別選取點M、N,沿PM、PN和MN修建地下水管,為了節(jié)約成本,要使得線段PM、PN與MN之和最?。?br />已測出∠ACB=45°,∠ADB=60°,∠CPD=75°,PC=502m,PD=40m,管理人員的想法能否實現(xiàn),若能,請求出PM+PN+MN的最小值,若不能,請說明理由.

2
【考點】四邊形綜合題.
【答案】10
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/2 8:0:9組卷:387引用:2難度:0.2
相似題
-
1.如圖,∠MON=90°,四邊形ABCD是正方形,且點A、D始終分別在射線OM和ON上.
(1)如圖1,若AB=4,點A、D在OM,ON上滑動過程中,OB何時取最大值,并求出此最大值.
(2)如圖2,點P在AB上,且∠PDA=∠ODA,DP交AC于點F,延長射線BF交AD,ON分別于點G、Q.
①求證:BQ⊥ON.
②若OD=,求△DFQ的周長.6發(fā)布:2025/6/9 5:0:1組卷:50引用:2難度:0.1 -
2.菱形ABCD中,AB=4,∠B=60°,E,F(xiàn)分別是AB,AD上的動點,且BE=AF,連接EF,交AC于G,則下列結(jié)論:①△BEC≌△AFC;②△ECF為等邊三角形;③CE的最小值為2
.其中正確的結(jié)論是( ?。?/h2>3發(fā)布:2025/6/9 5:30:2組卷:355引用:7難度:0.4 -
3.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠BCD=180°,E是CD中點,過點A作AE⊥AF交CB延長線于F,AD=1,CF=a.
(1)若CD=2,求四邊形ABCD的周長.
(2)若AF=2,AE=,求a的值;3
(3)若AE+AF=a+1,S四邊形ADCF=a+2;求AD與BC間的距離.發(fā)布:2025/6/9 6:30:1組卷:160引用:3難度:0.1