數(shù)學(xué)問題:計算1m+1m2+1m3+…+1mn(其中m,n都是正整數(shù),且m≥2,n≥1).
探究問題:為解決上面的數(shù)學(xué)問題,我們運用數(shù)形結(jié)合的思想方法,通過不斷地分割一個面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進(jìn)行探究.
探究一:計算12+122+123+…+12n.
第1次分割,把正方形的面積二等分,其中陰影部分的面積為12;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為12+122;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為12+122+123+…+12n,最后空白部分的面積是12n.
根據(jù)第n次分割圖可得等式:12+122+123+…+12n=1-12n.

探究二:計算13+132+133+…+13n.
第1次分割,把正方形的面積三等分,其中陰影部分的面積為23;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為23+232;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為23+232+233+…+23n,最后空白部分的面積是13n.
根據(jù)第n次分割圖可得等式:23+232+233+…+23n=1-13n,
兩邊同除以2,得13+132+133+…+13n=12-12×3n.

探究三:計算14+142+143+…+14n.
(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過程)

解決問題:計算1m+1m2+1m3+…+1mn.
(只需畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)
根據(jù)第n次分割圖可得等式:34+342+343+…+34n=1-14n34+342+343+…+34n=1-14n,
所以,1m+1m2+1m3+…+1mn=1m-1-1(m-1)×mn1m-1-1(m-1)×mn.
拓廣應(yīng)用:計算5-15+52-152+53-153+…+5n-15n.
1
m
1
m
2
1
m
3
1
m
n
1
2
1
2
2
1
2
3
1
2
n
1
2
1
2
1
2
2
1
2
1
2
2
1
2
3
1
2
n
1
2
n
1
2
1
2
2
1
2
3
1
2
n
1
2
n
1
3
1
3
2
1
3
3
1
3
n
2
3
2
3
2
3
2
2
3
2
3
2
2
3
3
2
3
n
1
3
n
2
3
2
3
2
2
3
3
2
3
n
1
3
n
1
3
1
3
2
1
3
3
1
3
n
1
2
1
2
×
3
n
1
4
1
4
2
1
4
3
1
4
n
1
m
1
m
2
1
m
3
1
m
n
3
4
3
4
2
3
4
3
3
4
n
1
4
n
3
4
3
4
2
3
4
3
3
4
n
1
4
n
1
m
1
m
2
1
m
3
1
m
n
1
m
-
1
1
(
m
-
1
)
×
m
n
1
m
-
1
1
(
m
-
1
)
×
m
n
5
-
1
5
5
2
-
1
5
2
5
3
-
1
5
3
5
n
-
1
5
n
【答案】+++…+=1-;-
3
4
3
4
2
3
4
3
3
4
n
1
4
n
1
m
-
1
1
(
m
-
1
)
×
m
n
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/18 22:0:2組卷:1924引用:31難度:0.1
相似題
-
1.圖①,圖②,圖③都是4×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點A.按下列要求畫圖:
(1)在圖①中,以格點為頂點,AB為一邊畫一個等腰三角形;
(2)在圖②中,以格點為頂點,AB為一邊畫一個正方形;
(3)在圖③中,以點A為一個頂點,另外三個頂點也在格點上,畫一個面積最大的正方形.發(fā)布:2025/6/19 16:30:1組卷:692引用:33難度:0.7 -
2.如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標(biāo)注數(shù)字3)
發(fā)布:2025/6/19 16:30:1組卷:1991引用:43難度:0.5 -
3.已知△ABC的三條邊長分別為3,4,6,在△ABC所在平面內(nèi)畫一條直線,將△ABC分割成兩個三角形,使其中的一個是等腰三角形,則這樣的直線最多可畫( ?。?/h2>
發(fā)布:2025/6/19 16:0:1組卷:2710引用:47難度:0.5
相關(guān)試卷