如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點(diǎn)為A(0,1),B(2,0),O(0,0),將此三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△A'B'O.
(1)有一條拋物線經(jīng)過點(diǎn)A',B',B,求該拋物線的解析式.
(2)設(shè)該拋物線的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t.
①當(dāng)0<t<2時(shí),求四邊形ABPB'的面積S與t的函數(shù)關(guān)系式,并求出S的最大值;
②點(diǎn)Q是直線AB上的一個(gè)動(dòng)點(diǎn),若以AB'為邊,點(diǎn)A,B',Q,P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的t的值.

【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=-x2+x+2;
(2)①S=-t2+2t+1(0<t<2),S的最大值為2;
②或或.
(2)①S=-t2+2t+1(0<t<2),S的最大值為2;
②
3
2
3
+
41
4
3
-
41
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:121引用:1難度:0.3
相似題
-
1.如圖,拋物線y=ax2+bx+c的圖象,經(jīng)過點(diǎn)A(1,0),B(3,0),C(0,3)三點(diǎn),過點(diǎn)C,D(-3,0)的直線與拋物線的另一交點(diǎn)為E.
(1)請(qǐng)你直接寫出:
①拋物線的解析式;
②直線CD的解析式;
③點(diǎn)E的坐標(biāo)(,);
(2)如圖1,若點(diǎn)P是x軸上一動(dòng)點(diǎn),連接PC,PE,則當(dāng)點(diǎn)P位于何處時(shí),可使得∠CPE=45°,請(qǐng)你求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)Q是拋物線上一動(dòng)點(diǎn),作QH⊥x軸于H,連接QA,QB,當(dāng)QB平分∠AQH時(shí),請(qǐng)你直接寫出此時(shí)點(diǎn)Q的坐標(biāo).發(fā)布:2025/5/24 2:0:8組卷:1271引用:3難度:0.1 -
2.在平面直角坐標(biāo)系xOy中,拋物線y=
x2+bx+c過點(diǎn)A(-2,-1),B(0,-3).12
(1)求拋物線的解析式;
(2)平移拋物線,平移后的頂點(diǎn)為P(m,n)(m>0).
?。绻鸖△OBP=3,設(shè)直線x=k,在這條直線的右側(cè)原拋物線和新拋物線均呈上升趨勢(shì),求k的取值范圍;
ⅱ.點(diǎn)P在原拋物線上,新拋物線交y軸于點(diǎn)Q,且∠BPQ=120°,求點(diǎn)P的坐標(biāo).發(fā)布:2025/5/24 1:0:1組卷:3109引用:3難度:0.4 -
3.如圖1,拋物線y=ax2+3ax(a為常數(shù),a<0)與x軸交于O,A兩點(diǎn),點(diǎn)B為拋物線的頂點(diǎn),點(diǎn)D是線段OA上的一個(gè)動(dòng)點(diǎn),連接BD并延長(zhǎng)與過O,A,B三點(diǎn)的⊙P相交于點(diǎn)C,過點(diǎn)C作⊙P的切線交x軸于點(diǎn)E.
(1)①求點(diǎn)A的坐標(biāo);②求證:CE=DE;
(2)如圖2,連接AB,AC,BE,BO,當(dāng),∠CAE=∠OBE時(shí),a=-233
①求證:AB2=AC?BE;②求的值.1OD-1OE發(fā)布:2025/5/24 1:0:1組卷:575引用:1難度:0.3