基本性質(zhì):三角形中線等分三角形的面積.
如圖1,AD是△ABC邊BC上的中線,則S△ABD=S△ACD=12S△ABC.
理由:因?yàn)锳D是△ABC邊BC上的中線,所以BD=CD.
又因?yàn)?div dealflag="1" class="MathJye" mathtag="math">S△ABD=12BD×AH
S
△
ABD
=
S
△
ACD
=
1
2
S
△
ABC
S
△
ABD
=
1
2
BD
×
AH
S
△
ACD
=
1
2
CD
×
AH
S
△
ABD
=
S
△
ACD
=
1
2
S
△
ABC
所以三角形中線等分三角形的面積.
基本應(yīng)用:
在如圖2至圖4中,△ABC的面積為a.
(1)如圖2,延長(zhǎng)△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示);(2)如圖3,延長(zhǎng)△ABC的邊BC到點(diǎn)D,延長(zhǎng)邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示);(3)在圖3的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖4).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示);拓展應(yīng)用:
(4)如圖5,點(diǎn)D是△ABC的邊BC上任意一點(diǎn),點(diǎn)E,F(xiàn)分別是線段AD,CE的中點(diǎn),且△ABC的面積為8a,則△BEF的面積為
2a
2a
(用含a的代數(shù)式表示),并寫(xiě)出理由.【考點(diǎn)】三角形綜合題.
【答案】a;2a;6a;2a
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/10 8:0:8組卷:154引用:2難度:0.5
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:182引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時(shí),DF∥AC;當(dāng)∠AFD=°時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過(guò)程中,DF與AB的交點(diǎn)記為P,如圖2,若△AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說(shuō)明理由.發(fā)布:2024/12/23 18:30:1組卷:1689引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AD上,以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng):動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段BC上,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=秒時(shí),PQ平分線段BD;
(2)當(dāng)t=秒時(shí),PQ⊥x軸;
(3)當(dāng)時(shí),求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:142引用:3難度:0.1
把好題分享給你的好友吧~~