已知函數(shù)f(x)滿足如下條件:①對任意x>0,f(x)>0;②f(1)=1;③對任意x>0,y>0,總有f(x)+f(y)≤f(x+y);
(1)證明:滿足題干條件的函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)(i)證明:對任意的s>0,f(2n?s)f(s)≥2n,其中n∈N*;
(ii)證明:對任意的x∈(2n-1,2n)(n∈N*),都有f(x)-f(1x)>x2-2x.
s
>
0
,
f
(
2
n
?
s
)
f
(
s
)
≥
2
n
f
(
x
)
-
f
(
1
x
)
>
x
2
-
2
x
【考點】抽象函數(shù)的周期性.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:21引用:1難度:0.6
相似題
-
1.已知f(x)在R上是奇函數(shù),且f(x+4)=f(x),當x∈(0,2)時,f(x)=2x2,則f(7)=( )
發(fā)布:2024/12/20 0:0:3組卷:81引用:7難度:0.8 -
2.已知函數(shù)f(x),g(x)在R上的導函數(shù)分別為f'(x),g'(x),若f(x+2)為偶函數(shù),y=g(x+1)-2是奇函數(shù),且f(3-x)+g(x-1)=2,則下列結(jié)論正確的是( ?。?/h2>
發(fā)布:2024/12/28 23:30:2組卷:111引用:7難度:0.6 -
3.已知函數(shù)f(x)對任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的圖象關(guān)于點(-1,0)對稱,且f(1)=2,則f(2009)=( ?。?/h2>
發(fā)布:2024/12/29 7:0:1組卷:83引用:2難度:0.5
相關(guān)試卷