已知對稱軸都在坐標軸上的橢圓C過點A(12,154)與點B(2,0),過點(1,0)的直線l與橢圓C交于P,Q兩點,直線BP,BQ分別交直線x=3于E,F兩點.
(1)求橢圓C的標準方程;
(2)PE?QF是否存在最小值?若存在,求出最小值;若不存在,請說明理由.
1
2
,
15
4
PE
?
QF
【考點】橢圓與平面向量.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/3 8:0:9組卷:134引用:4難度:0.6
相似題
-
1.已知橢圓E:
+x2a2=1(a>b>0)的右焦點為F,上頂點為A,直線AF與E相交的另一點為M.點M在x軸上的射影為點N,O為坐標原點,若y2b2=3AO,則E的離心率是( ?。?/h2>NM發(fā)布:2024/11/14 18:30:5組卷:487引用:6難度:0.7 -
2.橢圓C:
+x2a2=1(a>b>0)的左、右焦點分別為F1,F2,過點F1的直線l交橢圓C于A,B兩點,若|F1F2|=|AF2|,y2b2=2AF1,則橢圓C的離心率為( ?。?/h2>F1B發(fā)布:2024/12/6 18:30:2組卷:747引用:6難度:0.6 -
3.已知橢圓
=1(a>b>0)的左、右焦點分別為F1、F2,經過F1的直線交橢圓于A,B,△ABF2的內切圓的圓心為I,若3x2a2+y2b2+4IB+5IA=IF2,則該橢圓的離心率是( ?。?/h2>0發(fā)布:2024/11/28 2:30:1組卷:1147引用:12難度:0.5
把好題分享給你的好友吧~~