【問題提出】如圖1,AB為⊙O的一條弦,點(diǎn)C在弦AB所對的優(yōu)弧上運(yùn)動(dòng)時(shí),根據(jù)圓周角性質(zhì),我們知道∠ACB的度數(shù)不變.愛動(dòng)腦筋的小芳猜想,如果平面內(nèi)線段AB的長度已知,∠ACB的大小確定,那么點(diǎn)C是不是在某個(gè)確定的圓上運(yùn)動(dòng)呢?
【問題探究】為了解決這個(gè)問題,小芳先從一個(gè)特殊的例子開始研究.如圖2,若AB=4,線段AB上方一點(diǎn)C滿足∠ACB=45°,為了畫出點(diǎn)C所在的圓,小芳以AB為底邊構(gòu)造了一個(gè)Rt△AOB,再以點(diǎn)O為圓心,OA為半徑畫圓,則點(diǎn)C在⊙O上.后來小芳通過逆向思維及合情推理,得出一個(gè)一般性的結(jié)論.即:若線段AB的長度已知,∠ACB的大小確定,則點(diǎn)C一定在某一個(gè)確定的圓上,即定弦定角必定圓,我們把這樣的幾何模型稱之為“定弦定角”模型.
【模型應(yīng)用】(1)若AB=63,平面內(nèi)一點(diǎn)C滿足∠ACB=60°,若點(diǎn)C所在圓的圓心為O,則∠AOB=120°120°,半徑OA的長為 66;
(2)如圖3,已知正方形ABCD以AB為腰向正方形內(nèi)部作等腰△ABE,其中AB=AE,過點(diǎn)E作EF⊥AB于點(diǎn)F,若點(diǎn)P是△AEF的內(nèi)心.
①求∠BPA的度數(shù);
②連接CP,若正方形ABCD的邊長為6,求CP的最小值.
AB
=
6
3
【考點(diǎn)】圓的綜合題.
【答案】120°;6
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:589引用:5難度:0.4
相似題
-
1.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD?AB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.發(fā)布:2024/12/23 9:0:2組卷:1798引用:34難度:0.7 -
2.如圖,矩形ABCD中,AB=13,AD=6.點(diǎn)E是CD上的動(dòng)點(diǎn),以AE為直徑的⊙O與AB交于點(diǎn)F,過點(diǎn)F作FG⊥BE于點(diǎn)G.
(1)當(dāng)E是CD的中點(diǎn)時(shí):tan∠EAB的值為;
(2)在(1)的條件下,證明:FG是⊙O的切線;
(3)試探究:BE能否與⊙O相切?若能,求出此時(shí)BE的長;若不能,請說明理由.發(fā)布:2024/12/23 12:0:2組卷:641引用:5難度:0.4 -
3.在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SP為⊙O的半徑長;若點(diǎn)P與圓心O不重合,作射線OP交⊙O于點(diǎn)A,則SP為線段AP的長度.
圖1為點(diǎn)P在⊙O外的情形示意圖.
(1)若點(diǎn)B(1,0),C(1,1),,則SB=D(0,13)
(2)若直線y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;
(3)已知點(diǎn)P,Q在x軸上,R為線段PQ上任意一點(diǎn).若線段PQ上存在一點(diǎn)T,滿足T在⊙O內(nèi)且ST≥SR,直接寫出滿足條件的線段PQ長度的最大值.發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
把好題分享給你的好友吧~~