規(guī)定:若P(x,y)是以x,y為未知數(shù)的二元一次方程ax+by=c的正整數(shù)解,則稱此時(shí)點(diǎn)P為二元一次方程ax+by=c的“郡園點(diǎn)”.請回答以下關(guān)于x,y的二元一次方程的相關(guān)問題.
(1)方程x+2y=3的“郡園點(diǎn)”P的坐標(biāo)為 (1,1)(1,1).
(2)已知m,n為非負(fù)整數(shù),且-m+2|n|=1,若P(m,|n|)是方程2x+y=13的“郡園點(diǎn)”,求nm的值;
(3)“郡園點(diǎn)”P(x,y)滿足關(guān)系式:x-2y+mx+1+x+2y-3=3-x-2y,其中m為整數(shù),求“郡園點(diǎn)”P的坐標(biāo).
-
m
+
2
|
n
|
=
1
P
(
m
,
|
n
|
)
n
m
x
-
2
y
+
mx
+
1
+
x
+
2
y
-
3
=
3
-
x
-
2
y
【考點(diǎn)】三角形綜合題.
【答案】(1,1)
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/24 8:0:9組卷:741引用:6難度:0.3
相似題
-
1.【回顧思考】:用數(shù)學(xué)的思維思考
(1)如圖1,在△ABC中,AB=AC.
①若BD,CE是△ABC的角平分線.求證:BD=CE.
②若點(diǎn)D,E分別是邊AC,AB的中點(diǎn),連接BD,CE.求證:BD=CE.
(從①②兩題中選擇一題加以證明)
(2)【猜想證明】:用數(shù)學(xué)的眼光觀察
經(jīng)過做題反思,小明同學(xué)認(rèn)為:在△ABC中,AB=AC,D為邊AC上一動點(diǎn)(不與點(diǎn)A,C重合)對于點(diǎn)D在邊AC上的任意位置,在另一邊AB上總能找到一個(gè)與其對應(yīng)的點(diǎn)E,使得BD=CE.進(jìn)而提出問題:若點(diǎn)D,E分別運(yùn)動到邊AC,AB的延長線上,BD與CE還相等嗎?請解決下面的問題:
如圖2,在△ABC中,AB=AC,點(diǎn)D,E分別在邊AC,AB的延長線上,請?zhí)砑右粋€(gè)條件(不再添加新的字母),使BD=CE,并證明.
(3)【拓展探究】:用數(shù)學(xué)的語言表達(dá)
如圖3,在△ABC中,AB=AC=3,∠A=36°,E為邊AB上任意一點(diǎn)(不與點(diǎn)A,B重合),F(xiàn)為邊AC延長線上一點(diǎn).判斷BF與CE能否相等.若能,求CF的取值范圍;若不能,說明理由.發(fā)布:2025/5/21 17:0:2組卷:305引用:1難度:0.1 -
2.【初步感知】(1)如圖1,點(diǎn)A,B,C,D均在小正方形網(wǎng)格的格點(diǎn)上,則
=;tan∠BAC2
【問題解決】(2)求tan15°的值;
方案①:如圖2,在△ABC中,∠C=90°,∠BAC=30°,作AD平分∠BAC交BC于D;…
方案②:如圖3,在△ABC中,AB=AC,∠A=30°,過點(diǎn)B作BD⊥AC,垂足為D;…
請你選擇其中一種方案求出tan15°的值(結(jié)果保留根號);
【思維提升】(3)求sin18°的值;如圖4,在△ABC中,AB=AC,∠A=36°.求sin18°的值(結(jié)果保留根號).發(fā)布:2025/5/21 20:30:1組卷:350引用:4難度:0.1 -
3.如圖a和圖b,在△ABC中,AB=AC,BC=8,tanC=
.點(diǎn)K在AC邊上,點(diǎn)M,N分別在AB,BC上,且AM=CN=2.點(diǎn)P從點(diǎn)M出發(fā)沿折線勻速移動,到達(dá)點(diǎn)N時(shí)停止;而點(diǎn)Q在AC邊上隨P移動,且始終保持∠APQ=∠B.34
(1)當(dāng)點(diǎn)P在BC上時(shí),求點(diǎn)P與點(diǎn)A的最短距離:
(2)若點(diǎn)P在MB上,且PO將△ABC的面積分成上下4:5兩部分時(shí),求MP的長;
(3)設(shè)點(diǎn)P移動的路程為x,當(dāng)0≤x≤3及3≤x≤9時(shí),分別求點(diǎn)P到直線AC的距離(用含x的式子表示);
(4)在點(diǎn)P處設(shè)計(jì)并安裝一掃描器,按定角∠APQ掃描△APQ區(qū)域(含邊界),掃描器隨點(diǎn)P從M到B再到N共用時(shí)36秒.若AK=,請直接寫出點(diǎn)K被掃描到的總時(shí)長.94發(fā)布:2025/5/21 18:0:1組卷:138引用:1難度:0.2