某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會,兩個(gè)科目成績均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績合格的概率均為34,科目B每次考試成績合格的概率均為12.假設(shè)各次考試成績合格與否均互不影響.
(1)求他在科目B考試第一次合格的概率;
(2)在這項(xiàng)考試過程中,假設(shè)他不放棄所有的考試機(jī)會,求他可獲得證書的概率.
3
4
1
2
【考點(diǎn)】相互獨(dú)立事件和相互獨(dú)立事件的概率乘法公式.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/28 8:0:9組卷:136引用:3難度:0.8
相似題
-
1.甲、乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( )12發(fā)布:2024/12/29 12:0:2組卷:246引用:6難度:0.6 -
2.小王同學(xué)進(jìn)行投籃練習(xí),若他第1球投進(jìn),則第2球投進(jìn)的概率為
;若他第1球投不進(jìn),則第2球投進(jìn)的概率為23.若他第1球投進(jìn)概率為13,他第2球投進(jìn)的概率為( ?。?/h2>23發(fā)布:2024/12/29 12:0:2組卷:293引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻(xiàn)血活動,假設(shè)每個(gè)獻(xiàn)血者到達(dá)采血站是隨機(jī)的,并且每個(gè)獻(xiàn)血者到達(dá)采血站和其他的獻(xiàn)血者到達(dá)采血站是相互獨(dú)立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻(xiàn)血者到達(dá)采血站獻(xiàn)血,用隨機(jī)模擬的方法來估計(jì)一下,這10位獻(xiàn)血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7