中國古代許多著名的數(shù)學(xué)家對推導(dǎo)高階等差數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了名為“垛積術(shù)”的算法,展現(xiàn)了聰明才智,如南宋數(shù)學(xué)家楊輝在《詳解九章算法?商功》一書中記載的三角垛、方垛等的求和都與高階等差數(shù)列有關(guān).如圖是一個三角垛,最頂層有1個小球,第二層有3個,第三層有6個,第四層有10個,則第25層小球的個數(shù)為( )
【考點】歸納推理.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/19 8:0:9組卷:19引用:3難度:0.7
相似題
-
1.按數(shù)列的排列規(guī)律猜想數(shù)列
,23,-45,87,…的第10項是( )-169發(fā)布:2024/12/29 13:30:1組卷:100引用:5難度:0.8 -
2.根據(jù)給出的數(shù)塔猜測123456×9+7=( ?。?br />1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111
…發(fā)布:2024/12/29 11:0:2組卷:545引用:8難度:0.9 -
3.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法?商功》中,后人稱為“三角垛”.“三角垛”最上層有1個球,第二層有3個球,第三層有6個球,….設(shè)第n層有an個球,上往下n層球的總數(shù)為Sn,則( ?。?/h2>
發(fā)布:2024/12/29 6:30:1組卷:106引用:7難度:0.7
把好題分享給你的好友吧~~