設Sn為正項數(shù)列{an}的前n項和,滿足2Sn=a2n+an-2.
(I)求{an}的通項公式;
(II)若不等式(1+2an+t) an≥4對任意正整數(shù)n都成立,求實數(shù)t的取值范圍;
(Ⅲ)設bn=e34anln(n+1)(其中r是自然對數(shù)的底數(shù)),求證:b1b3+b2b4+…+bnbn+2<66.
a
2
n
2
a
n
+
t
a
n
e
3
4
a
n
ln
(
n
+
1
)
b
1
b
3
+
b
2
b
4
+
…
+
b
n
b
n
+
2
<
6
6
【考點】數(shù)列與不等式的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/4 8:0:9組卷:869引用:4難度:0.1
相似題
-
1.已知等比數(shù)列{xn}的各項為不等于1的正數(shù),數(shù)列{yn}滿足
(a>0,且a≠1),設y3=18,y6=12.ynlogaxn=2
(1)數(shù)列{yn}的前多少項和最大,最大值是多少?
(2)試判斷是否存在自然數(shù)M,使得n>M時,xn>1恒成立,若存在,求出最小的自然數(shù)M,若不存在,請說明理由.發(fā)布:2025/1/14 8:0:1組卷:11引用:1難度:0.1 -
2.古印度數(shù)學家婆什伽羅在《麗拉沃蒂》一書中提出如下問題:某人給一個人布施,初日施2子安貝(古印度貨幣單位),以后逐日倍增,問一月共施幾何?在這個問題中,以一個月31天計算,記此人第n日布施了an子安貝(其中1≤n≤31,n∈N*),數(shù)列{an}的前n項和為Sn.若關于n的不等式
恒成立,則實數(shù)t的取值范圍為( ?。?/h2>Sn-62<a2n+1-tan+1發(fā)布:2024/12/9 14:30:1組卷:52引用:3難度:0.6 -
3.已知等比數(shù)列{an}的前n項和為Sn,
,則使得不等式Sn+1+1=4an(n∈N*)成立的正整數(shù)m的最大值為( ?。?/h2>am+am+1+…+am+k-am+1Sk<2023(k∈N*)發(fā)布:2024/12/7 11:0:2組卷:201引用:4難度:0.5
把好題分享給你的好友吧~~