我們知道,多項(xiàng)式a2+6a+9可以寫成(a+3)2的形式,這就是將多項(xiàng)式a2+6a+9因式分解,當(dāng)一個(gè)多項(xiàng)式(如a2+6a+8)不能寫成兩數(shù)和(成差)的平方形式時(shí),我們可以嘗試用下面的辦法來分解因式.
a2+6a+8=a2+6a+9-1
=(a+3)2-1
=[(a+3)+1][(a+3)-1]
=(a+4)(a+2)
請(qǐng)仿照上面的做法,將下列各式分解因式:
(1)x2-6x-27
(2)x2-2xy-3y2.
【考點(diǎn)】因式分解-十字相乘法等.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/14 8:0:9組卷:1241引用:4難度:0.1
相似題
-
1.兩位同學(xué)將一個(gè)關(guān)于x的二次三項(xiàng)式ax2+bx+c分解因式時(shí),一位同學(xué)因看錯(cuò)了一次項(xiàng)系數(shù)而分解成2(x-1)(x-9),另一位同學(xué)因看錯(cuò)了常數(shù)項(xiàng)而分解成2(x-2)(x-4).
(1)求原來的二次三項(xiàng)式.
(2)將原來的二次三項(xiàng)式分解因式.發(fā)布:2025/6/8 15:30:1組卷:301引用:3難度:0.7 -
2.把多項(xiàng)式x2+2x-8因式分解,正確的是( ?。?/h2>
發(fā)布:2025/6/8 11:30:1組卷:605引用:3難度:0.8 -
3.對(duì)于形如x2+2ax+a2這樣的二次三項(xiàng)式,可以用公式法將它分解成(x+a)2的形式.但對(duì)于二次三項(xiàng)式x2+2ax-3a2,就不能直接運(yùn)用公式了.此時(shí),我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使它與x2+2ax的和成為一個(gè)完全平方式,再減去a2,整個(gè)式子的值不變,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像這樣,先添一適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:
①a2-6a-7;
②a4+a2b2+b4.
(2)若a+b=5,ab=6,求:
①a2+b2;
②a4+b4的值.發(fā)布:2025/6/8 21:0:2組卷:191引用:3難度:0.5