試卷征集
加入會員
操作視頻

已知函數(shù)f(x)滿足f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的較大值,min(p,q)表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( ?。?/h1>

【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1142引用:44難度:0.7
相似題
  • 1.若不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x均成立,則實數(shù)a的取值范圍是( ?。?/h2>

    發(fā)布:2024/8/5 8:0:8組卷:971引用:20難度:0.7
  • 2.對于函數(shù)y=f(x)(x∈I),y=g(x)(x∈I),若對于任意x∈I,存在x0,使得f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),則稱f(x),g(x)為“兄弟函數(shù)”.已知函數(shù)
    f
    x
    =
    x
    2
    +
    px
    +
    q
    p
    ,
    q
    R
    ,
    g
    x
    =
    x
    2
    -
    x
    +
    1
    x
    是定義在區(qū)間
    x
    [
    1
    2
    ,
    2
    ]
    上的“兄弟函數(shù)”,那么函數(shù)f(x)在區(qū)間
    x
    [
    1
    2
    2
    ]
    上的最大值為( ?。?/h2>

    發(fā)布:2024/8/28 6:0:10組卷:351引用:15難度:0.7
  • 3.求關于x的二次函數(shù)y=x2-2tx+1在-1≤x≤1上的最小值(t為常數(shù))

    發(fā)布:2024/8/4 8:0:9組卷:29引用:3難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正