如圖,拋物線y1=ax2+bx+34與x軸交于點A(-3,0),點B,點D是拋物線y1的頂點,過點D作x軸的垂線,垂足為點C(-1,0).

(1)求拋物線y1所對應(yīng)的函數(shù)解析式;
(2)如圖1,點M是拋物線y1上一點,且位于x軸上方,橫坐標為m,連接MC,若∠MCB=∠DAC,求m的值;
(3)如圖2,將拋物線y1平移后得到頂點為B的拋物線y2.點P為拋物線y1上的一個動點,過點P作y軸的平行線,交拋物線y2于點Q,過點Q作x軸的平行線,交拋物線y2于點R.當以點P,Q,R為頂點的三角形與△ACD全等時,請直接寫出點P的坐標.
3
4
【考點】二次函數(shù)綜合題.
【答案】(1);
(2);
(3)或.
y
=
-
1
4
x
2
-
1
2
x
+
3
4
(2)
-
2
+
5
(3)
(
0
,
3
4
)
P
(
2
,-
5
4
)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2501引用:12難度:0.1
相似題
-
1.如圖,拋物線與x軸交于A(3,0)、B兩點,與y軸交于點C,直線y=-x+m經(jīng)過A、C兩點,連接BC,tan∠ABC=3,點D為x軸上一點,過點D作DE⊥x軸,交直線AC于點E,交拋物線于點P,連接CP.
(1)確定直線和拋物線的表達式;
(2)當OD=OB(點D不與點B重合)時,試判斷△CPE的形狀,并說明理由;
(3)當∠PCE+∠BCO=45°時,求點P的坐標.發(fā)布:2025/6/12 14:30:1組卷:16引用:1難度:0.4 -
2.如圖,在平面直角坐標系中,拋物線y=x2+(1-m)x-m交x軸于A、B兩點(點A在點B的左邊),交y軸負半軸于點C
(1)如圖1,m=3.
①直接寫出A、B、C三點的坐標.
②若拋物線上有一點D,∠ACD=45°,求點D的坐標.
(2)如圖2,過點E(m,2)作一直線交拋物線于P、Q兩點,連接AP、AQ,分別交y軸于M、N兩點,求證:OM?ON是一個定值.發(fā)布:2025/6/12 14:30:1組卷:1938引用:4難度:0.2 -
3.已知拋物線y=ax2+2x+c的圖象與x軸交于點A(3,0)和點C,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上找一點D,使得點D到點B、C的距離之和最小,并求出點D的坐標;
(3)在第一象限的拋物線上,是否存在一點P,使得△ABP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.發(fā)布:2025/6/12 14:30:1組卷:717引用:12難度:0.5