已知函數(shù)f(x)=ax2+1bx(b>0).
(1)指出f(x)的單調(diào)區(qū)間;(不要求證明)
(2)若a>0,x1,x2,x3滿足x1+x2>0,x2+x3>0,x1+x3>0,且|xi|>aa(i=1,2,3),求證:f(x1)+f(x2)+f(x3)>2ab;
(3)證明:當(dāng)a=b=1時,不等式|[f(x)]n|-|f(xn)|≥2n-2(n∈N+)對任意x∈(-∞,0)∪(0,+∞)恒成立.
a
x
2
+
1
bx
a
a
2
a
b
【考點】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的最值;由函數(shù)的單調(diào)性求解函數(shù)或參數(shù).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:122引用:1難度:0.2
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2