在△ABC中,∠BAC=90°,AB=AC=22,D為BC的中點,E,F(xiàn)分別為AC,AD上任意一點,連接EF,將線段EF繞點E順時針旋轉(zhuǎn)90°得到線段EG,連接FG,AG.
(1)如圖1,點E與點C重合,且GF的延長線過點B,若點P為FG的中點,連接PD,求PD的長;
(2)如圖2,EF的延長線交AB于點M,點N在AC上,∠AGN=∠AEG且GN=MF,求證:AM+AF=2AE;
(3)如圖3,F(xiàn)為線段AD上一動點,E為AC的中點,連接BE,H為直線BC上一動點,連接EH,將△BEH沿EH翻折至△ABC所在平面內(nèi),得到△B′EH,連接B′G,直接寫出線段B′G的長度的最小值.

2
2
【考點】幾何變換綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:4877引用:10難度:0.3
相似題
-
1.問題背景:已知∠EDF的頂點D在△ABC的邊AB所在直線上(不與A,B重合),DE交AC所在直線于點M,DF交BC所在直線于點N,記△ADM的面積為S1,△BND的面積為S2.
(1)初步嘗試:如圖①,當(dāng)△ABC是等邊三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2時,則S1?S2=
(2)類比探究:在(1)的條件下,先將點D沿AB平移,使AD=4,再將∠EDF繞點D旋轉(zhuǎn)至如圖②所示位置,求S1?S2的值;
(3)延伸拓展:當(dāng)△ABC是等腰三角形時,設(shè)∠B=∠A=∠EDF=α.
(Ⅰ)如圖③,當(dāng)點D在線段AB上運動時,設(shè)AD=a,BD=b,求S1?S2的表達式(結(jié)果用a,b和α的三角函數(shù)表示).
(Ⅱ)如圖④,當(dāng)點D在BA的延長線上運動時,設(shè)AD=a,BD=b,直接寫出S1?S2的表達式,不必寫出解答過程.發(fā)布:2025/6/13 17:0:1組卷:1485引用:8難度:0.3 -
2.【問題提出】如圖1,△ABC中,AB=AC,點D在AB上,過點D作DE∥BC,交AC于E,連接CD,F(xiàn),G,H分別是線段CD,DE,BC的中點,則線段FG,F(xiàn)H的數(shù)量關(guān)系是(直接寫出結(jié)論).
【類比探究】將圖1中的△ADE繞點A旋轉(zhuǎn)到如圖2位置,上述結(jié)論還成立嗎?若成立,請給出證明;若不成立,請說明理由.
【拓展延伸】如圖3,在Rt△ABC中,∠C=90°,AC=5,BC=12,點E在BC上,且BE=,過點E作ED⊥AB,垂足為D,將△BDE繞點B順時針旋轉(zhuǎn),連接AE,取AE的中點F,連接DF.當(dāng)AE與AC垂直時,線段DF的長度為(直接寫出結(jié)果).61發(fā)布:2025/6/13 18:0:2組卷:1540引用:4難度:0.1 -
3.在△ABC中,AB=AC,D是邊BC上一動點,連接AD,將AD繞點A逆時針旋轉(zhuǎn)至AE的位置,使得∠DAE+∠BAC=180°.
(1)如圖1當(dāng)∠BAC=90°時,連接BE,交AC于點F.若BE平分∠ABC,BD=2,求AF的長;
(2)如圖2,連接BE,取BE的中點G,連接AG.猜想AG與CD存在的數(shù)量關(guān)系,并證明你的猜想.發(fā)布:2025/6/13 14:0:2組卷:609引用:3難度:0.3
相關(guān)試卷