如圖,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,D為AC延長線上一點,連接BD,將線段BD繞點D逆時針旋轉(zhuǎn)90°得到線段DE,過點E作EF⊥AC于點F,連接AE.
(1)依題意補全圖形;
(2)比較AF與CD的大小,并證明;
(3)連接BE,G為BE的中點,連接CG,用等式表示線段CD,CG,BC之間的數(shù)量關(guān)系,并證明.
【考點】幾何變換綜合題.
【答案】(1)依題意補全圖形即可;
(2)AF=CD,證明見解析;
(3)CD+CG=BC,證明見解析.
(2)AF=CD,證明見解析;
(3)CD+
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1330引用:5難度:0.2
相似題
-
1.如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點G.有如下結(jié)論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是33.3
其中正確結(jié)論的序號是.發(fā)布:2025/5/23 1:30:2組卷:3126引用:15難度:0.5 -
2.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點F,交BD于點E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關(guān)系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數(shù);
(3)如圖2,在(2)的條件下,線段BD與AC交于點O,點G是△BCE內(nèi)一點,∠CGE=90°,GE=3,將△CGE繞著點C逆時針旋轉(zhuǎn)60°得△CMH,E點對應(yīng)點為M,G點的對應(yīng)點為H,且點O,G,H在一條直線上直接寫出OG+OH的值.發(fā)布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
3.如圖1,在Rt△ABC中,∠BAC=90°,∠ACB=60°,AC=1,點A1,B1為邊AC,BC的中點,連接A1B1,將△A1B1C繞點C逆時針旋轉(zhuǎn)α(0°≤α≤360°).
(1)如圖1,當(dāng)α=0°時,=;BB1,AA1所在直線相交所成的較小夾角的度數(shù)是 ;BB1AA1
(2)將△A1B1C繞點C逆時針旋轉(zhuǎn)至圖2所示位置時,(1)中結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)當(dāng)△A1B1C繞點C逆時針旋轉(zhuǎn)過程中,請直接寫出S△ABA1的最大值,S△ABA1=.發(fā)布:2025/5/22 19:0:1組卷:432引用:3難度:0.4