已知如圖,在四邊形ABCD中,AD=CD,M、N分別是BC、AB上的點(diǎn).
(1)如圖①,若∠A=∠C=90°,∠B=∠MDN=60°.某同學(xué)在探究線段AN、MN、CM之間的數(shù)量關(guān)系時(shí)是這樣的思路:延長(zhǎng)BA到P,使AP=CM,連接PD(圖1中虛線),通過(guò)研究圖中有關(guān)三角形全等,再利用全等三角形的性質(zhì)結(jié)合題中條件進(jìn)行轉(zhuǎn)化,從而得到結(jié)論.
這位同學(xué)在這個(gè)研究過(guò)程中:證明兩對(duì)三角形分別全等的依據(jù)是SAS,SASSAS,SAS,得出線段AN、MN、CM之間的數(shù)量關(guān)系的結(jié)論是MN=AN+CMMN=AN+CM.
(2)如圖②,若∠A+∠C=180°,其他條件不變,當(dāng)AN、MN、CM之間滿足(1)中的數(shù)量關(guān)系時(shí),設(shè)∠B=α°,請(qǐng)求出∠MDN的度數(shù)(用α含的代數(shù)式表示);
(3)如圖③,我區(qū)某學(xué)校在慶祝“六一”兒童節(jié)的定向越野活動(dòng)中,大本營(yíng)指揮部設(shè)在點(diǎn)O處,甲同學(xué)在指揮部東北方向的E處,乙同學(xué)在指揮部南偏西75°的F處,且兩位同學(xué)到指揮部的距離相等.接到行動(dòng)指令后,甲同學(xué)以100米/分鐘的速度向正西方向前進(jìn),乙同學(xué)以120米/分鐘的速度向北偏西60°方向前進(jìn).10分鐘后,指揮部監(jiān)測(cè)到甲、乙兩同學(xué)分別到達(dá)G、H處,且么∠GOH=75°,求此時(shí)甲、乙兩同學(xué)之間的距離.

【考點(diǎn)】四邊形綜合題.
【答案】SAS,SAS;MN=AN+CM
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/20 8:0:8組卷:472引用:2難度:0.1
相似題
-
1.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當(dāng)AD與邊BC相交,點(diǎn)D與點(diǎn)F在直線AC的兩側(cè)時(shí),BD與CF的數(shù)量關(guān)系為
(2)將圖①中的菱形ADEF繞點(diǎn)A旋轉(zhuǎn)α(0°<α<180°),如圖②.
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時(shí),直接寫出CE的長(zhǎng)度.發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1 -
2.探究問(wèn)題:
(1)方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
證明:延長(zhǎng)CB到G,使BG=DE,連接AG,
∵四邊形ABCD為正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
變化:在圖①中,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫出AM和AB的數(shù)量關(guān)系 ;
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.12
(3)問(wèn)題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說(shuō)明理由).猜想:∠B與∠D滿足關(guān)系:.12發(fā)布:2025/6/24 19:0:1組卷:881引用:1難度:0.1 -
3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點(diǎn),F(xiàn)是正方形ABCD外一點(diǎn),連接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說(shuō)明理由.
(2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求BE:BF的值.
(3)在(2)的條件下,若正方形ABCD的邊長(zhǎng)為(3+3)cm,∠EDC=30°,求△BCF的面積.7發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5