試卷征集
加入會(huì)員
操作視頻

先閱讀下面的內(nèi)容,再解決問(wèn)題,
例題:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:因?yàn)閙2+2mn+2n2-6n+9=0,
所以m2+2mn+n2+n2-6n+9=0.
所以(m+n)2+(n-3)2=0.
所以m+n=0,n-3=0.
所以m=-3,n=3.
問(wèn)題:(1)若x2+4y2+2xy-12y+12=0,求xy的值;
(2)已知a,b,c是等腰△ABC的三邊長(zhǎng),且a,b滿足a2+b2=10a+8b-41,求△ABC的周長(zhǎng).

【答案】(1)xy的值為-4;
(2)△ABC的周長(zhǎng)為13或14.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:455引用:4難度:0.6
相似題
  • 1.閱讀下面的解答過(guò)程:
    求y2+4y+8的最小值
    解:
    y2+4y+8
    =y2+4y+4+4
    =(y+2)2+4
    =(y+2)2≥0,即(y+2)2的最小值為0,
    ∴(y+2)2+4的最小值為4.
    即y2+4y+8的最小值是4.
    根據(jù)上面的解答過(guò)程,回答下列問(wèn)題:
    (1)式子x2+2x+2有最
    值(填“大”或“小”),此最值為
    (填具體數(shù)值).
    (2)求
    1
    2
    x2+x的最小值.
    (3)求-x2+2x+4的最大值.

    發(fā)布:2025/6/2 6:0:2組卷:316引用:3難度:0.7
  • 2.教科書中這樣寫道:“我們把多項(xiàng)式(a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng),使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變,這種方法叫做配方法.例如x2+2x-3=(x2+2x+1)-1-3=(x+1)2-4,2x2+4x-6=2(x2+2x+1)-2-6=2(x+1)2-8.
    根據(jù)閱讀材料解決下列問(wèn)題:
    (1)當(dāng)x為何值時(shí),多項(xiàng)式-2x2-4x+6有最大值,并求出這個(gè)最大值.
    (2)求分式
    5
    x
    2
    -
    20
    x
    +
    29
    x
    2
    -
    4
    x
    +
    5
    的最大值.
    (3)當(dāng)x>0時(shí),求
    x
    2
    +
    2
    x
    +
    5
    x
    +
    1
    的最小值.

    發(fā)布:2025/6/1 23:30:1組卷:508引用:1難度:0.7
  • 3.閱讀下列材料:
    利用完全平方公式,可以將多項(xiàng)式ax2+bx+c(a≠0)變形為a(x+m)2+n的形式,我們把這樣的式子變形叫做多項(xiàng)式ax2+bx+c(a≠0)的配方法.
    運(yùn)用多項(xiàng)式的配方法及平方差公式能對(duì)一些多項(xiàng)式進(jìn)行分解因式.
    例如:x2+11x+24=x2+11x+(
    11
    2
    2-(
    11
    2
    2+24
    =
    x
    +
    11
    2
    2
    -
    25
    4
    =
    x
    +
    11
    2
    +
    5
    2
    x
    +
    11
    2
    -
    5
    2
    =
    x
    +
    8
    x
    +
    3

    根據(jù)以上材料,解答下列問(wèn)題:
    (1)用多項(xiàng)式的配方法將x2+8x-1變形為(x+m)2+n的形式;
    (2)下面是某位同學(xué)用配方法及平方差公式把多項(xiàng)式x2-3x-40進(jìn)行分解因式的解答過(guò)程:
    x2-3x-40
    =x2-3x+32-32-40
    =(x-3)2-49
    =(x-3+7)(x-3-7)
    =(x+4)(x-10)
    老師說(shuō),這位同學(xué)的解答過(guò)程中有錯(cuò)誤,請(qǐng)你找出該同學(xué)解答中開始出現(xiàn)錯(cuò)誤的地方,然后再寫出完整的、正確的解答過(guò)程.
    正確的解答過(guò)程:

    (3)求證:x,y取任何實(shí)數(shù)時(shí),多項(xiàng)式x2+y2-2x-4y+16的值總為正數(shù).

    發(fā)布:2025/6/1 22:30:2組卷:467引用:8難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正