閱讀理解:課外興趣小組活動時,老師提出了如下問題:

在△ABC中,AB=9,AC=5,BC邊上的中線AD的取值范圍.
(1)小明在組內經過合作交流,得到了如下的解決方法(如圖1):
①延長AD到Q使得DQ=AD;
②再連接BQ,把AB、AC、2AD集中在△ABQ中;
③利用三角形的三邊關系可得4<AQ<14,則AD的取值范圍是2<AD<72<AD<7.
感悟:解題時,條件中若出現“中點”“中線”等條件,可以考慮倍長中線,構造全等三角形,把分散的已知條件和所求證的結論集中到同一個三角形中.
(2)請寫出圖1中AC與BQ的位置關系并證明;
(3)思考:已知,如圖2,AD是△ABC的中線,AB=AE,AC=AF,∠BAE=∠FAC=90°,試探究線段AD與EF的數量和位置關系,并加以證明.
【考點】三角形綜合題.
【答案】2<AD<7
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/25 8:0:1組卷:2884引用:15難度:0.4
相似題
-
1.【問題探究】在學習三角形中線時,我們遇到過這樣的問題:如圖①,在△ABC中,點D為BC邊上的中點,AB=4,AC=6,求線段AD長的取值范圍.我們采用的方法是延長線段AD到點E,使得AD=DE,連結CE,可證△ABD≌△ECD,可得CE=AB=4,根據三角形三邊關系可求AD的范圍,我們將這樣的方法稱為“三角形倍長中線”.則AD的范圍是:.
【拓展應用】
(1)如圖②,在△ABC中,BC=2BD,AD=3,AC=2,∠BAD=90°,求AB的長.10
(2)如圖③,在△ABC中,D為BC邊的中點,分別以AB、AC為直角邊向外作直角三角形,且滿足∠ABE=∠ACF=30°,連結EF,若AD=2,則EF=.(直接寫出)3發(fā)布:2025/5/26 8:0:5組卷:411引用:5難度:0.4 -
2.如圖①,在△ABC中,∠ABC=90°,AC=10,BC=6,D點為AC邊的中點.點P在邊AB上運動(點P不與A、B重合),連結PD、PC.設線段AP的長度為x.
(1)求AB的長.
(2)當△APD是等腰三角形時,求這個等腰三角形的腰長.
(3)連結PD、PC,當PD+PC取最小值時,求x的值.
(4)如圖②,取AP的中點為O,以點O為圓心,以線段AP的長為直徑的圓與線段PD有且只有一個公共點時,直接寫出x的取值范圍.發(fā)布:2025/5/26 6:30:2組卷:176難度:0.3 -
3.材料一:如圖①,點C把線段AB分成兩部分(AC>BC),若
=ACAB,那么稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點.類似地,對于實數:a1<a2<a3,如果滿足(a2-a1)2=(a3-a2)(a3-a1),則稱a2為a1,a3的黃金數.BCAC
材料二:如果一條直線l把一個面積為S的圖形分成面積為S1和S2兩部分(S1>S2),且滿足,那么稱直線l為該圖形的黃金分割線.如圖②,在△ABC中,若線段CD所在的直線是△ABC的黃金分割線,過點C作一條直線交BD邊于點E,過點D作DF∥EC交△ABC的一邊于點F,連接EF,交CD于G.S1S=S2S1
問題:
(1)若實數0<a<1,a為0,1的黃金數,求a的值.
(2)S△CFGS△EDG.(填”>””<””=”)
(3)EF是△ABC的黃金分割線嗎?為什么?發(fā)布:2025/5/26 11:0:2組卷:38引用:3難度:0.2