試卷征集
加入會(huì)員
操作視頻

如圖,在平面直角坐標(biāo)系中,直線l分別交x軸、y軸于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),∠ABO=30°,過(guò)點(diǎn)B的直線y=
3
3
x+m與x軸交于點(diǎn)C.
(1)求直線l的解析式;
(2)在直線BC上有一點(diǎn)D,在x軸上有一點(diǎn)E,求AD+DE的最小值;
(3)在(2)的條件下,當(dāng)AD+DE最小時(shí),在直線DE上有一點(diǎn)P,在x軸上有一點(diǎn)Q,當(dāng)以P、Q、A、B為頂點(diǎn)的四邊形為平行四邊形時(shí).求出點(diǎn)P的坐標(biāo).

【考點(diǎn)】一次函數(shù)綜合題
【答案】(1)y=-
3
x+
3
;
(2)AD+DE的最小值為2
3

(3)點(diǎn)P的坐標(biāo)為(-1,
3
)或(-1,-
3
).
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:238引用:1難度:0.3
相似題
  • 1.在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,4),直線CM∥x軸(如圖所示),點(diǎn)B與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱(chēng),直線y=x+b(b為常數(shù))經(jīng)過(guò)點(diǎn)B,且與直線CM相交點(diǎn)D,連接OD,設(shè)P在x軸的正半軸上,若△POD為等腰三角形,則點(diǎn)P的坐標(biāo)為
     

    發(fā)布:2025/6/23 18:30:2組卷:1071引用:4難度:0.5
  • 2.如圖,點(diǎn)A在y軸上,點(diǎn)B在x軸上,且OA=OB=1,經(jīng)過(guò)原點(diǎn)O的直線l交線段AB于點(diǎn)C,過(guò)C作OC的垂線,與直線x=1相交于點(diǎn)P,現(xiàn)將直線L繞O點(diǎn)旋轉(zhuǎn),使交點(diǎn)C從A向B運(yùn)動(dòng),但C點(diǎn)必須在第一象限內(nèi),并記AC的長(zhǎng)為t,分析此圖后,對(duì)下列問(wèn)題作出探究:
    (1)當(dāng)△AOC和△BCP全等時(shí),求出t的值;
    (2)通過(guò)動(dòng)手測(cè)量線段OC和CP的長(zhǎng)來(lái)判斷它們之間的大小關(guān)系并證明你得到的結(jié)論;
    (3)設(shè)點(diǎn)P的坐標(biāo)為(1,b),
    ①試寫(xiě)出b關(guān)于t的函數(shù)關(guān)系式和變量t的取值范圍.
    ②求出當(dāng)△PBC為等腰三角形時(shí)點(diǎn)P的坐標(biāo).

    發(fā)布:2025/6/23 17:0:1組卷:1353引用:10難度:0.1
  • 3.如圖1,在平面直角坐標(biāo)系xOy中,已知矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(10,3),點(diǎn)D為OA的中點(diǎn)過(guò)D的直線l:y=kx+b(k≠0).
    (1)若直線l同時(shí)也過(guò)C點(diǎn),請(qǐng)求出直線l的解析式;
    (2)若直線l與線段OC交于點(diǎn)E,且DE分△DCO的面積比為1:2,求出此時(shí)l的解析式;
    (3)如圖2,若直線l與線段CB交于點(diǎn)F,是否存在這樣的點(diǎn)F,使△ODF為等腰三角形?若存在,請(qǐng)求出滿足條件的所有k值;若不存在,請(qǐng)說(shuō)明理由.

    發(fā)布:2025/6/23 21:30:2組卷:302引用:1難度:0.1
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正