【問題背景】
如圖1,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖2),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=2CD,從而得出結(jié)論:AC+BC=2CD
【簡單應(yīng)用】
(1)在圖1中,若AC=2,BC=22,則CD=33.
(2)如圖3,AB是⊙O的直徑,點C、D在⊙O上,?AD=?BD,若AB=13,BC=12,求CD的長.
【拓展規(guī)律】
(3)如圖4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)

2
2
2
2
?
AD
?
BD
【考點】圓的綜合題.
【答案】3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:625引用:15難度:0.1
相似題
-
1.如圖1,直線l:y=-
x+b與x軸交于點A(4,0),與y軸交于點B,點C是線段OA上一動點(0<AC<34).以點A為圓心,AC長為半徑作⊙A交x軸于另一點D,交線段AB于點E,連接OE并延長交⊙A于點F.165
(1)求直線l的函數(shù)表達式和tan∠BAO的值;
(2)如圖2,連接CE,當(dāng)CE=EF時,
①求證:△OCE∽△OEA;
②求點E的坐標;
(3)當(dāng)點C在線段OA上運動時,求OE?EF的最大值.發(fā)布:2025/6/20 11:30:2組卷:5310引用:10難度:0.1 -
2.如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A,D的圓O分別交AB,AC于點E,F(xiàn),連接EF.
(1)求證:BC是圓O的切線;
(2)求證:AD2=AF?AB;
(3)若BE=16,sinB=,求AD的長.513發(fā)布:2025/6/22 0:0:2組卷:1174引用:7難度:0.2 -
3.已知到直線l的距離等于a的所有點的集合是與直線l平行且距離為a的兩條直線l1、l2(如圖①).
(1)在圖②的平面直角坐標系中,畫出到直線y=x+2的距離為1的所有點的集合的圖形.并寫出該圖形與y軸交點的坐標.2
(2)試探討在以坐標原點O為圓心,r為半徑的圓上,到直線y=x+2的距離為1的點的個數(shù)與r的關(guān)系.2
(3)如圖③,若以坐標原點O為圓心,2為半徑的圓上只有兩個點到直線y=x+b的距離為1,則b的取值范圍為 .發(fā)布:2025/6/21 6:0:2組卷:516引用:9難度:0.5