對于平面內(nèi)點P和⊙G,給出如下定義:T是⊙G上任意一點,點P繞點T旋轉180°后得到點P',則稱點P'為點P關于⊙G的旋轉點.如圖為點P及其關于⊙G的旋轉點P'的示意圖.
在平面直角坐標系xOy中,⊙O的半徑為1,點P(0,-2).
(1)在點A(-1,0),B(0,4),C(2,2)中,是點P關于⊙O的旋轉點的是 B、CB、C;
(2)若在直線y=x+b上存在點P關于⊙O的旋轉點,求b的取值范圍;
(3)若點D在⊙O上,⊙D的半徑為1,點P關于⊙D的旋轉點為點P',請直接寫出點P'的橫坐標xP′的取值范圍.

【考點】圓的綜合題.
【答案】B、C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/12 8:30:1組卷:547引用:3難度:0.1
相似題
-
1.問題探究
(1)在△ABC中,BD,CE分別是∠ABC與∠BCA的平分線.
①若∠A=60°,AB=AC,如圖1,試證明BC=CD+BE;
②將①中的條件“AB=AC”去掉,其他條件不變,如圖2,問①中的結論是否成立?并說明理由.
遷移運用
(2)若四邊形ABCD是圓的內(nèi)接四邊形,且∠ACB=2∠ACD,∠CAD=2∠CAB,如圖3,試探究線段AD,BC,AC之間的等量關系,并證明.發(fā)布:2025/6/14 18:30:4組卷:1848引用:5難度:0.2 -
2.【數(shù)學概念】
有一條對角線平分一組對角的四邊形叫“對分四邊形”.
【概念理解】
(1)關于“對分四邊形”,下列說法正確的是 .(填所有正確的序號)
①菱形是“對分四邊形”
②“對分四邊形”至少有兩組鄰邊相等
③“對分四邊形”的對角線互相平分
【問題解決】
(2)如圖①,PA為⊙O的切線,A為切點.在⊙O上是否存在點B、C,使以P、A、B、C為頂點的四邊形是“對分四邊形”?小明的作法:
①以P為圓心,PA長為半徑作弧,與⊙O交于點B;
②連接PO并延長,交⊙O于點C;
③點B、C即為所求.
(3)如圖②,已知線段AB和直線l,請在圖②中利用無刻度的直尺和圓規(guī),在直線l上作出點M、N,使以A、B、M、N為頂點的四邊形是“對分四邊形”.(只要作出一個即可,不寫作法,保留作圖痕跡)
(4)如圖③,⊙O的半徑為5,AB是⊙O的弦,AB=8,點C是⊙O上的動點,若存在四邊形ABCD是“對分四邊形”,且有一條邊所在的直線是⊙O的切線,直接寫出AC的長度.發(fā)布:2025/6/14 20:30:2組卷:977引用:3難度:0.1 -
3.如圖,⊙O為△ABC的外接圓,AC=BC,D為OC與AB的交點,E為線段OC延長線上一點,且∠EAC=∠ABC.
(1)求證:直線AE是⊙O的切線.
(2)若CD=6,AB=16,求⊙O的半徑;
(3)在(2)的基礎上,點F在⊙O上,且=?BC,△ACF的內(nèi)心點G在AB邊上,求BG的長.?BF發(fā)布:2025/6/14 23:0:1組卷:1104引用:7難度:0.1