已知橢圓C:x2a2+y2b2=1(a>b>0)與雙曲線x2-y2=12有相同的焦點(diǎn)F1,F(xiàn)2,P為橢圓上一點(diǎn),△PF1F2面積最大值為3.
(1)求橢圓C的方程;
(2)直線y=kx(k≠0)與橢圓C相交于R,S兩點(diǎn),若RE⊥x軸,垂足為E.求證:直線SE的斜率kSE=12k;
(3)A為橢圓C的右頂點(diǎn),若過點(diǎn)G(3,0)且斜率不為0的直線交橢圓C于M、N兩點(diǎn),O為坐標(biāo)原點(diǎn).問:x軸上是否存在定點(diǎn)T,使得∠MTO=∠NTA恒成立.若存在,請求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.
x
2
a
2
+
y
2
b
2
1
2
3
1
2
【考點(diǎn)】直線與圓錐曲線的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/13 8:0:9組卷:50引用:1難度:0.3
相似題
-
1.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:65引用:5難度:0.7 -
2.已知兩個定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
3.若過點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個交點(diǎn),則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7