試卷征集
加入會(huì)員
操作視頻

布勞威爾不動(dòng)點(diǎn)定理是拓?fù)鋵W(xué)里一個(gè)非常重要的不動(dòng)點(diǎn)定理,它得名于荷蘭數(shù)學(xué)家魯伊茲?布勞威爾,簡(jiǎn)單地講就是對(duì)于滿(mǎn)足一定條件的連續(xù)函數(shù)f(x),存在一個(gè)點(diǎn)x0,使得f(x0)=x0,那么我們稱(chēng)該函數(shù)為“不動(dòng)點(diǎn)“函數(shù),而稱(chēng)x0為該函數(shù)的一個(gè)不動(dòng)點(diǎn).現(xiàn)新定義:若x0滿(mǎn)足f(x0)=-x0,則稱(chēng)x0為f(x)的次不動(dòng)點(diǎn).
(1)判斷函數(shù)f(x)=x2-2是否是“不動(dòng)點(diǎn)”函數(shù),若是,求出其不動(dòng)點(diǎn);若不是,請(qǐng)說(shuō)明理由.
(2)已知函數(shù),若a是g(x)的次不動(dòng)點(diǎn),求實(shí)數(shù)a的值;
(3)若函數(shù)
h
x
=
lo
g
1
2
4
x
-
b
?
2
x
在[0,1]上僅有一個(gè)不動(dòng)點(diǎn)和一個(gè)次不動(dòng)點(diǎn),求實(shí)數(shù)b的取值范圍.

【答案】(1)不動(dòng)點(diǎn)是 2 和-1,
(2)
a
=
-
2
3

(3)b∈[0,1].
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:264引用:13難度:0.5
相似題
  • 1.若{x|x2+px+q=0}={1,3},則p+q的值為( ?。?/h2>

    發(fā)布:2024/12/15 2:0:2組卷:19引用:3難度:0.8
  • 2.已知函數(shù)f(x)=(x-1)|x-a|+4有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是

    發(fā)布:2024/12/29 6:30:1組卷:107引用:2難度:0.5
  • 3.已知直線(xiàn)y=-x+2分別與函數(shù)
    y
    =
    1
    2
    e
    x
    和y=ln(2x)的圖象交于點(diǎn)A(x1,y1),B(x2,y2),則(  )

    發(fā)布:2024/12/29 11:0:2組卷:247引用:9難度:0.6
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶(hù)服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正