端午節(jié)期間,某食品店平均每天可賣出300只粽子,賣出1只粽子的利潤是1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價每降0.1元,每天可多賣出100只粽子.為了使每天獲取的利潤更多,該店決定把零售單價下降m(0<m<1)元.
(1)零售單價下降m元后,該店平均每天可賣出(300+100×m0.1)(300+100×m0.1)只粽子,利潤為(1-m)(300+100×m0.1)(1-m)(300+100×m0.1)元.
(2)在不考慮其他因素的條件下,當m定為多少時,才能使該店每天獲取的利潤是420元并且賣出的粽子更多?
m
0
.
1
m
0
.
1
m
0
.
1
m
0
.
1
【考點】一元二次方程的應用.
【答案】(300+100×);(1-m)(300+100×)
m
0
.
1
m
0
.
1
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:13644引用:33難度:0.3
相似題
-
1.如圖,在△ABC中,∠C=90°,AB=10cm,AC=8cm,點P,Q同時由A,C兩點出發(fā),分別沿AC,CB方向移動,它們的
速度都是2cm/s.
(1)設經(jīng)過t秒后,那么在△PCQ中,此時線段,線段CQ長為cm,PC長為cm.
(2)經(jīng)過幾秒,P,Q相距cm?210發(fā)布:2025/1/24 8:0:2組卷:201引用:6難度:0.3 -
2.如圖,矩形ABCD中,AB=8cm,BC=6cm,點M從點A出發(fā),沿著AB→BC的方向以4cm/s的速度向終點C勻速運動;點N從點B出發(fā),沿著BC→CD的方向以3cm/s的速度向終點D勻速運動;點M,N同時出發(fā),當M,N中任何一個點到達終點時,另一個點同時停止運動,點M運動時間為t(s),連接MN,△BMN的面積為S(cm2).
(1)求S關于t的函數(shù)解析式,并直接寫出自變量t的取值范圍;
(2)△BMN的面積可以是矩形ABCD面積的嗎?如能,求出相應的t值,若不能,請說明理由.14發(fā)布:2025/1/13 8:0:2組卷:259引用:4難度:0.6 -
3.如圖,在△ABC中,∠B=90°,點P從點A開始沿AB邊向點B以1cm/秒的速度移動,點Q從點B開始沿BC邊向點C以2cm/秒的速度移動.
(1)如果P、Q分別從A、B同時出發(fā),幾秒后△PBQ是等腰直角三角形?
(2)如果P、Q分別從A、B同時出發(fā),幾秒后△PBQ的面積等于3cm2?
(3)如果P、Q分別從A、B同時出發(fā),四邊形APQC的面積是△ABC面積的三分之二?發(fā)布:2025/1/20 8:0:1組卷:125引用:1難度:0.5