【學習新知】如果關于x的一元二次方程ax2+bx+c=0有兩個實數根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”.
研究發(fā)現了此類方程的一般性結論:設其中一根為t,則另一個根為2t,因此ax2+bx+c=a(x-t)(x-2t)=ax2-3atx+2t2a,所以有b2-92ac=0.
我們記“K=b2-92ac”,即K=0時,方程ax2+bx+c=0為倍根方程.
【問題解決】
(1)方程①x2-x-2=0;②x2-6x+8=0;③6x2+x=0;④13x2+2x+83=0,這幾個方程中,是倍根方程的是 ②④②④(填序號即可);
(2)若(x-2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;
(3)關于x的一元二次方程x2-mx+23n=0(m≥0)是倍根方程,且點A(m,n)在一次函數y=3x-8的圖象上,求此倍根方程的表達式并求出方程的解.
9
2
9
2
1
3
8
3
m
2
3
【考點】二次函數綜合題.
【答案】②④
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/6/7 2:30:1組卷:324引用:2難度:0.1
相似題
-
1.如圖,在平面直角坐標系中,矩形ABCD的邊BC與x軸、y軸的交點分別為C(8,0),B(0,6),CD=5,拋物線y=ax2-
x+c(a≠0)過B,C兩點,動點M從點D開始以每秒5個單位長度的速度沿D→A→B→C的方向運動到達C點后停止運動.動點N從點O以每秒4個單位長度的速度沿OC方向運動,到達C點后,立即返回,向CO方向運動,到達O點后,又立即返回,依此在線段OC上反復運動,當點M停止運動時,點N也停止運動,設運動時間為t.154
(1)求拋物線的解析式;
(2)求點D的坐標;
(3)當點M,N同時開始運動時,若以點M,D,C為頂點的三角形與以點B,O,N為頂點的三角形相似,直接寫出t的值.發(fā)布:2025/6/7 16:30:2組卷:39引用:2難度:0.1 -
2.如圖1,拋物線y=ax2+bx+4與x軸交于A,B兩點,與y軸交于點C,AB=8,B點橫坐標為2,延長矩形OBDC的DC邊交拋物線于E.
(1)求拋物線的解析式;
(2)如圖2,若點P是直線EO上方的拋物線上的一個動點,過點P作x軸的垂線交直線EO于點M,求PM的最大值;
(3)如圖3,如果點F是拋物線對稱軸l上一點,拋物線上是否存在點G,使得以F,G,A,C為頂點的四邊形是平行四邊形?若存在,求出所有滿足條件的點G的坐標;若不存在,請說明理由.發(fā)布:2025/6/7 7:0:1組卷:565引用:8難度:0.1 -
3.如圖,拋物線y=ax2+bx與x軸交于點A(-2,0),與反比例函數y=
圖象交于點B,過點B作BQ⊥y軸于點Q,BQ=1.3x
(1)求拋物線的表達式;
(2)若點P是拋物線對稱軸上一點,當BP+OP的值最小時,求線段QP的長;
(3)若點M是平面直角坐標系內任意一點,在拋物線的對稱軸上是否存在一點D,使得以A,B,D,M為頂點的四邊形是菱形?若存在,請直接寫出點D的坐標;若不存在,請說明理由.發(fā)布:2025/6/7 17:30:1組卷:37引用:1難度:0.4