已知函數f(x)=ex,g(x)=ln(x+a)(a∈R).
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設φ(x)=f(x)g(x),請判斷φ(x)是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)當a=0時,若對于任意s>t>0,不等式g(s)-g(t)>k(1f(s)-1f(t))恒成立,求k的取值范圍.
g
(
s
)
-
g
(
t
)
>
k
(
1
f
(
s
)
-
1
f
(
t
)
)
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:639引用:4難度:0.3
相似題
-
1.已知函數f(x)=(x-a)lnx(a∈R),它的導函數為f'(x).
(1)當a=1時,求f'(x)的零點;
(2)若函數f(x)存在極小值點,求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279難度:0.4 -
2.若函數
有兩個極值點,則實數a的取值范圍為( ?。?/h2>f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:110難度:0.5 -
3.定義:設f'(x)是f(x)的導函數,f″(x)是函數f'(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.經過探究發(fā)現:任何一個三次函數都有“拐點”且“拐點”就是三次函數圖像的對稱中心,已知函數
的對稱中心為(1,1),則下列說法中正確的有( ?。?/h2>f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:157引用:6難度:0.5