如圖,拋物線y=ax2+bx+c經過點A(-2,0),B(4,0),與y軸正半軸交于點C,且OC=2OA,拋物線的頂點為D,對稱軸交x軸于點E.直線y=mx+n經過B,C兩點.
(1)求拋物線及直線BC的函數表達式;
(2)點F是拋物線對稱軸上一點,當FA+FC的值最小時,求出點F的坐標及FA+FC的最小值;
(3)連接AC,若點P是拋物線上對稱軸右側一點,點Q是直線BC上一點,試探究是否存在以點E為直角頂點的Rt△PEQ,且滿足tan∠EQP=tan∠OCA.若存在,求出點P的坐標;若不存在,請說明理由.

【考點】二次函數綜合題.
【答案】(1)拋物線的表達式為y=-x2+x+4;直線BC的表達式為y=-x+4;
(2)點F的坐標為(1,3)、FA+FC的最小值為4;
(3)存在,點P的坐標為(,)或(,).
1
2
(2)點F的坐標為(1,3)、FA+FC的最小值為4
2
(3)存在,點P的坐標為(
7
2
7
+
1
2
13
2
13
-
5
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/5/25 6:30:1組卷:4311引用:12難度:0.3
相似題
-
1.如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于C(0,3),DE所在的直線是該拋物線的對稱軸.
(1)求拋物線的解析式及頂點D的坐標;
(2)連接AD,P是AD上的動點,P′是點P關于DE的對稱點,連接PE,過點P′作P′F∥PE,交x軸于點F,設四邊形PP′FE的面積為y,EF=x,求y與x之間的函數關系式.發(fā)布:2025/6/16 2:0:1組卷:231引用:2難度:0.3 -
2.如圖,拋物線y=ax2+bx+c與x軸交于原點O和點A,且其頂點B關于x軸的對稱點坐標為(2,1).
(1)求拋物線的函數表達式;
(2)拋物線的對稱軸上存在定點F,使得拋物線y=ax2+bx+c上的任意一點G到定點F的距離與點G到直線y=-2的距離總相等.
①證明上述結論并求出點F的坐標;
②過點F的直線l與拋物線y=ax2+bx+c交于M,N兩點.
證明:當直線l繞點F旋轉時,+1MF是定值,并求出該定值;1NF
(3)點C(3,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQBC周長最小,直接寫出P,Q的坐標.發(fā)布:2025/6/16 5:0:1組卷:2172引用:5難度:0.4 -
3.如圖,已知拋物線y=ax2+bx+5經過A(-5,0),B(-4,-3)兩點,與x軸的另一個交點為C,頂點為D,連接BD,CD.
(1)求該拋物線的表達式;
(2)判斷△BCD的形狀,并說明理由;
(3)若點P為該拋物線上一動點(與點B、C不重合),該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,請直接寫出滿足條件的所有點P的坐標;若不存在,請說明理由.發(fā)布:2025/6/16 5:30:3組卷:1379引用:2難度:0.1