如果一個(gè)三位數(shù)的十位數(shù)字等于它的百位和個(gè)位數(shù)字的差的絕對值,那么稱這個(gè)三位數(shù)為“絕對數(shù)”,如:三位數(shù)312,∵1=|3-2|,∴312是“絕對數(shù)”,把一個(gè)絕對數(shù)m的任意一個(gè)數(shù)位上的數(shù)字去掉,得到三個(gè)兩位數(shù),這三個(gè)兩位數(shù)之和記為F(m),把m的百位數(shù)字的3倍,十位數(shù)字的兩倍和個(gè)位數(shù)字之和記為G(m).
如:F(312)=31+32+12=75,G(312)=3×3+2×1+2=13.
(1)請問257是不是“絕對數(shù)”,如果是,請求出F(257),G(257)的值;
(2)若三位數(shù)A是“絕對數(shù)”,且F(A)-2G(A)是完全平方數(shù),請求出所有符合條件的A.
【考點(diǎn)】完全平方數(shù).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/20 8:0:8組卷:697引用:5難度:0.3
相似題
-
1.如果對于不<8的自然數(shù)n,當(dāng)3n+1是一個(gè)完全平方數(shù)時(shí),n+1能表示成k個(gè)完全平方數(shù)的和,那么k的最小值為( )
發(fā)布:2025/6/17 23:0:1組卷:550引用:18難度:0.5 -
2.在2001、2002、…、2010這10個(gè)數(shù)中,不能表示成兩個(gè)平方數(shù)差的數(shù)有
發(fā)布:2025/6/19 1:30:1組卷:77引用:2難度:0.7 -
3.對于任意一個(gè)三位正整數(shù),百位上的數(shù)字加上個(gè)位上的數(shù)字之和恰好等于十位上的數(shù)字,則稱這個(gè)三位數(shù)為“牛轉(zhuǎn)乾坤數(shù)”.例如:對于三位數(shù)451,4+1=5,則451是“牛轉(zhuǎn)乾坤數(shù)”;對于三位數(shù)110,1+0=1,則110是“牛轉(zhuǎn)乾坤數(shù)”.
(1)求證:任意一個(gè)“牛轉(zhuǎn)乾坤數(shù)”一定能被11整除;
(2)在一個(gè)“牛轉(zhuǎn)乾坤數(shù)”的十位與百位之間添加1得到一個(gè)新的四位數(shù)M,若M的各位數(shù)字之和為完全平方數(shù),求所有滿足條件的“牛轉(zhuǎn)乾坤數(shù)”.發(fā)布:2025/6/2 11:30:1組卷:751引用:2難度:0.3
相關(guān)試卷