在△ABC中,AB=BC,∠ABC=90°.

(1)如圖1,點D在BC上,DE⊥BC于點D,連接BE,若∠DBE=60°,AC=42,BD=23,求線段AE的長;
(2)如圖2,點D在△ABC內(nèi)部,連接AD,BD,CD,F(xiàn)是CD的中點,連接BF,若∠BAD=∠CBF,求證:∠DBF=45°;
(3)如圖3,A點關(guān)于直線BC的對稱點為A',連接A'C,點D是△A'AC內(nèi)部一動點且∠ADC=90°,若AC=4,當線段A'D最短時,直接寫出△ABD的面積.
2
3
【考點】幾何變換綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:374引用:2難度:0.1
相似題
-
1.問題背景:已知∠EDF的頂點D在△ABC的邊AB所在直線上(不與A,B重合),DE交AC所在直線于點M,DF交BC所在直線于點N,記△ADM的面積為S1,△BND的面積為S2.
(1)初步嘗試:如圖①,當△ABC是等邊三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2時,則S1?S2=
(2)類比探究:在(1)的條件下,先將點D沿AB平移,使AD=4,再將∠EDF繞點D旋轉(zhuǎn)至如圖②所示位置,求S1?S2的值;
(3)延伸拓展:當△ABC是等腰三角形時,設(shè)∠B=∠A=∠EDF=α.
(Ⅰ)如圖③,當點D在線段AB上運動時,設(shè)AD=a,BD=b,求S1?S2的表達式(結(jié)果用a,b和α的三角函數(shù)表示).
(Ⅱ)如圖④,當點D在BA的延長線上運動時,設(shè)AD=a,BD=b,直接寫出S1?S2的表達式,不必寫出解答過程.發(fā)布:2025/6/13 17:0:1組卷:1485引用:8難度:0.3 -
2.【問題提出】如圖1,△ABC中,AB=AC,點D在AB上,過點D作DE∥BC,交AC于E,連接CD,F(xiàn),G,H分別是線段CD,DE,BC的中點,則線段FG,F(xiàn)H的數(shù)量關(guān)系是(直接寫出結(jié)論).
【類比探究】將圖1中的△ADE繞點A旋轉(zhuǎn)到如圖2位置,上述結(jié)論還成立嗎?若成立,請給出證明;若不成立,請說明理由.
【拓展延伸】如圖3,在Rt△ABC中,∠C=90°,AC=5,BC=12,點E在BC上,且BE=,過點E作ED⊥AB,垂足為D,將△BDE繞點B順時針旋轉(zhuǎn),連接AE,取AE的中點F,連接DF.當AE與AC垂直時,線段DF的長度為(直接寫出結(jié)果).61發(fā)布:2025/6/13 18:0:2組卷:1540引用:4難度:0.1 -
3.如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)當A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中的△BCE繞點B旋轉(zhuǎn),當A,B,E三點在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉(zhuǎn)到圖3位置時,(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.發(fā)布:2025/6/14 1:0:2組卷:2069引用:43難度:0.1